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ABSTRACT

Recent development of several unsteady supersonic methods
for computations of airloads for elastic bodies of revolution,
asymmetric bodies and body-wing configurations are reported.
These methods include the Harmonic Potential Panel (HPP) method,
the Bundle Triplet Method (BTM) and the combined method of BTM
and the Harmonic Gradient Method (HGM) for body-wing
combinations. All methods are based on the generic Harmonic-
Gradient (H-G) model, which is essential in providing accurate
solutions in the full frequency domain and the low Mach number
range.

Extensive comparisons of computed results obtained from
these methods show good correlations with existing data.
Comparison examples range from simple cones and ogive bodies to
Saturn SA-1 configuration, to the cylindrical panel membrance and
to the NACA wing-body combinations. Cases computed yield steady
and unsteady pressures, generalized forces, stability
derivatives, aerodynamic dampings and divergence and flutter
boundaries for these configurations.

The developed methods have been validated with existing
theories or measured data. For supersonic aeroelastic analysis,
these methods yield results that are accurate and cost-effective,
thus rendering them very favorable for technology transfer and

industry applications.
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CHAPTER 1

INTRODUCTION

Long slender missiles or rockets at cruising supersonic
speeds are susceptible to a number of aercelastic instabilities.
First, it is known that the stability and control characteristics
of high speed flexible bodies may be significantly influenced by
the distortion of the structure under transient loading
conditions. Second, the body/fin configurations are likely to
flutter as a result of the properly phased short-period rigid
body-fin mode and the body bending mode. In fact, the earlier
flutter incident of the British JTVI famjet missile in 1955, as
shown in Figs. 1 and 2, is one such example (Ref. 1).
Furthermore, the problem of the store-airframe interaction,
during the cruise and/or maneuver phase, of modern aircraft has
been a major concern for design and performance. The effects of
this type of interaction could sometimes change the airload, and
hence the wing flutter characteristics, rather drastically. For
example, problems such as stores in pitch-yaw combined
oscillations and the tip-missile influence are among the critical
factors related to aircraft flutter. Clearly, the prediction of
these boundaries relies almost exclusively on the unsteady
aerodynamic inputs. The objective of the present work is
therefore to provide a generalized Harmonic Potential Panel (HPP)
method for computing the unsteady aerodynamics of arbitrary
flexible bodies and body-fin configurations in the supersonic

flow regime.




1.1 Survey of Literature

Currently, several panel methods have claimed success for
predictions of the steady aerodynamics for wing-body combinations
in the supersonic flow regime (Refs. 2 and 3). In recent years,
computational methods for unsteady supersonic flow prediction
have been extensively investigated (Ref. 4). However, these
approaches are mostly formulated for wing planform calculations.
On the other hand, the investigation of unsteady supersonic flow
for oscillating bodies in the past has been mostly based on
slender body or not-so-slender body theories for rigid-body
oscillations in the low-frequency range.

In the slender body limit the Adams and Sears theory (Ref.
5) was extended to unsteady flow by Garrick (Ref. 6). Although
Garrick’s theory is valid for all frequencies and for flexible
bodies, it has the limitations of being independent of the Mach
number and it is found too inaccurate for bodies of practical
thickness.

In the not-so-slender body limit, Lansing (Ref. 7) used a
frequency expansion procedure for treatment of rigid-body
oscillations, and Platzer and Sherer (Ref. 8) applied the
linearized method of characteristics (LMOC) for rigid bodies in
low-frequency oscillations. Tobak and Wehrend (Ref. 9) extended
Van Dyke’s first- and second-order theories (Ref. 10) to unsteady
flow for cones. Bond and Packard’s theory (Ref. 11) for flexible

bodies appeared in 1961; however, it was found to involve




erroneous boundary conditions, as was pointed out by Hoffman and
Platzer (Ref. 12).

It appears that little progress has been made in the
development cof a viable computational method for wing-body or
body-fin combinations, for unsteady supersonic aerodynamic
predictions, which is uniformly valid in the complete frequency
domain. Hence, the present work consists of the development of a
viable method in the full-frequency domain for computations of
the unsteady aerodynamics of arbitrary flexible bodies in the

supersonic flow regime.

1.2 Outline

For bodies in pitch motion, the proper choice of the
coordinate system has been subject to some controversy in the
past. In Chapter 2 the formulations in the wind-fixed, the body-
fixed (Appendix A), and the pseudo-wind-fixed coordinate systems
are presented.

In Chapter 3 the solution procedure for the steady mean flow
problem is developed. The linearized equation for the mean flow
is solved by using the Karman and Moore procedure (Ref. 13). The
nonlinear equation for the mean flow is solved according to Van
Dyke’s iterative scheme (Ref. 10). Computed mean-flow velocities
and pressures for a cone-cylinder, a parabolic-ogive, and a
parabolic-ogive-boattail bodies are presented.

In Chapter 4 the solutions of the equations in various
coordinate systems as derived in Chapter 2 are obtained. The
Harmonic Gradient concept is applied to the dipole strength so

that the number of panel elements becomes least affected by the




given Mach number and reduced frequency. It is shown that when
the wind-fixed system is applied in a straight-forward manner,
the solution obtained is totally contaminated by a spurious
leading-edge singularity. In Appendix C, it is shown that such
singularity is totally removed in a conical coordinate system.
Effects of frequency and mean-flow nonlinearities are
investigated in the body-fixed coordinate system. Comparisons of
the present results with NASA’'S measured data (Refs. 14 and 15)
of the aerodynamic damping coefficients for different bodies are
shown.

In Chapter 5 the equations for flutter computations are
presented. Flutter boundaries for a 7.5° cone are determined by
using the linear and nonlinear method. Comparisons of the
present results with NASA’s measured data (Ref. 16) are
presented.

In Chapter 6 the formulation for bodies with asymmetric
cross—section is presented in the body-fixed coordinate system.
For ease of application a spline panel method is used to
determine the pressure and forces acting on the body.
Comparisons of the mean flow pressures and static forces for
elliptic cones with those computed by USSAERO code (Ref. 2) show
clear limitations of the present method when the asymmetry in the
body cross-section increases.

In Chapter 7, the development of the Bundle Triplet Method
(BTM) is presented. The BTM is a more general method in
treatments of asymmetric bodies in that the line doublet

formulation of the spline panel method is generated to a




generalized triplet one. The body cross-section is also divided
into the so-called "pie sectors” but a line source and a line
doublet are superposed in each sectors; thus forming a bundle of
triplet lines. A least square procedure is used to account for
the interference between sectors. Substantial improvements are
found in the results over those obtained using the methods in
Chapter 6. Moreover, the BTM is validated through the
application cases of cylindrical panel flutter in which the
generalized forces obtained are in excellent agreement with exact
theories in the higher frequency range and for higher order
modes.

In Chapter 8, the formulation for the body-wing combinations
is presented. The acceleration potential version of the Harmonic
Gradient Method (AHGM) is in combined use for computations of the
body-wing aerodynamics. The present formulation not only allows
the computed domain to be confined to the surface panels but it
also directly yields the unsteady pressure on the wing surface.
Therefore, the present method is a very effective one in
treatments of unsteady aerodynamics over body-wing
configurations.

Finally, conclusions from the present investigation and
recommendations for future work are presented in Chapter 9.

In what follows, all variables are nondimensionalized by the
true length, and time scales defined by the body length, and the

body length divided by the freestream velocity, respectively.




CHAPTER 2

FORMULATION

In this chapter, the formulation for a body of revolution
performing bending oscillations is presented.

The fluid flow is assumed to be inviscid and isentropic.
Thus, the fluid velocity V can be defined by the scalar potential

Q(X’,Y’,Z’;t’), i.e.
V = vQ (2.1)

The governing equation for the potential Q is the full

potential equation

- a 1 *
a2 V2 Q = Q., ., + 3pv (V)2 + 5 (VQV) (V)2 (2.2)

" "

where "a" is the local speed of sound given by
a2 = o - (r-1) {o,, + 3 [(v@)2 - 1]} (2.3)
M2 t’ 2 )
The time coordinate above, t’, is based on a gpatial

coordinate system, (x’,y’,z’), that is fixed with respect to the
fluid at infinity.

It is known that various linearized small disturbance
equations can be derived from Eqs. (2.2) and (2.3) depending on
the coordinate system chosen. Their formulations according to
the wind-fixed, the body-fixed and the pseudo-wind-fixed

coordinate systems are discussed in order.




2.1 Wind-Fixed Coordinate System
If a cylindrical coordinate system with its x’-axis parallel
to the freestream velocity is adopted (see Fig. 3) then the full

potential can be written as

Q (x’,r’,8’,t’) = x’ + & (x',r’,8’,t’) (2.4)

where ¢(x',r’,9’,t’) is the perturbation potential.
Substituting Eq. (2.4) into Eqs. (2.2) and (2.3) and
retaining only linear terms in ¢ yields the following linear

equation

(1 - M2)d,,,, + ¢ + =0

r’'r’

" |

, — 2M2¢ , ., - M2o,,,, = 0 (2.5)
o Xt ottt

r
For a body of revolution in unsteady motion with small
amplitude of oscillation the perturbation potential can be split
into two parts; the mean flow, zero-angle-of-attack, potential,

¢,(x’,r’), and the unsteady flow potential, ¢,(x’,r’)cose’
$(x’,r’,0",t’) = ¢, (x’,r’) + §(t’)¢,(x’,r’) cose’ (2.6)

where §(t’) is the instantaneous amplitude of oscillation. For
simple harmonic oscillations &§(t’)=é,eikt’, where k is the
reduced frequency. Substituting these relations into Eq. (2.5)

and collecting terms of order one and §,, one obtains

1
(1 - Mi) ¢Ox'x' + ¢Or’r' + F’¢Or‘ =0 (2.7)




1
(].‘Mi) ¢1X'X’ +¢1r'r' +r_)¢1r'

1

> ¢, — 2ikMZ ¢, ., + MZkZg, = 0 (2.8)

la’

These are the governing equations in the wind-fixed coordinate

system for ¢, and ¢,.

2.1.1 Boundary Conditions

Physical considerations suggest that all perturbations
should vanish upstream of the Mach wave emanating from the body

apex,

o (X7, ) = #5,, (x’,r’)

]
(=]

$or0 (x',17)

at x’-g8r’=0

b

¢, (x',r")

1}
(o]

B4 (x7,r") = ¢, .. (x",r")

(2.9)
and that at any instant the flow must be tangent to the body
surface. In the wind-fixed coordinate system the latter

condition can be expressed as

%% + 7Q.9S = 0 at § = 0 (2.10)
where S(x’,r’,8’,t’)=0 describes the body surface. For a body of
revolution performing small amplitude bending oscillations, the

equation of the body surface can be simplified (Ref. 17) to

S(x’,r’',8’,t’) = r’-R(x’) + §(t’)g(x’)cos®’ + 0(é2) = 0
(2.11)

where g(x’) is the normalized natural mode shape.




Now, substituting Egs. (2.11), (2.4) and (2.6) into (2.10)

vields

¢y, - R (l+¢,,.) + 8(t’)cos®’

(g’ (1+e,,.) - R’¢, . + ¢,.. + ikg] + 0(é2) =0 (2.12)
at r’ = R(x’)-8(t’)g(x’')cose®’

It is now necessary to remove the implicit dependence on
5{t’) in the potential functions by expressing the boundary
condition at the mean position (Ref. 17) r’=R(x’). This 1is
accomplished by using a Taylor-series expansion about r’=R{(x’').
Performing this expansion in Eq. (2.12) and collecting terms of

order one and §,, yields

#or -~ R'95,, = R’ at r’ = R(x') (2.13)

¢x‘rl - R,¢1x' —g’(x’)(l+¢0x') + g(x’)‘

(¢Dr'r'_H’¢Ox’r’) - ikg(x’)
at r’ = R(x') (2.14)

2.1.2 Pressure Coefficient

Based on the time-dependent Bernoulli equation, the exact
isentropic pressure coefficient is expanded to yield the mean

flow and unsteady flow pressure coefficients,

C, = C3 + Cé 5, ekt cos®’ (2.15)

and after Taylor-series expansion about the mean position

r’'=R(x"'), Cg and Cg can be expressed as




2
€y = = [s,"-1] at r’=R’(x) (2.16)
YMZ
Cé = _ZSO {(1+¢Ox’) ¢lx‘ * ¢Or'¢1r' * ik¢1 - g(x,)

(foxrer (1405, ) + orrr 9or- 1) at r=R(x) (2.17)

and

s, = [1 - lowzc2g,,. ¢ d02. 92, ) (2.18)

2

~

As shown in Appendix C, in the slender body approximation,

¢,, 1s given by

RR’
¢0r‘ = r.’

and its derivatives with respect to x’ and r’ are respectively

R’2 + RR'' RR'
bor x» = —r—— , and 4., = - 7z

At the body apex both terms behave like

Q
=]

thus, if R’(0) does not vanish, the second order derivatives
#,..,. and ¢, . . are singular at the body apex since R(0)=0.
Hence, the second order derivative terms in Eqs. (2.14) and

f2.17) associated with g{(x’') will result in an apex singularity

10




if g(0) does not vanish. The cause of this apex singularity was
discussed by Platzer and Liu (Ref. 17), where they pointed out
that it was due to the assumption that é62g2(x’)/R2(x’')«l was

not uniformly valid at the apex for a nonvanishing g(0).
Apparently, this singularity is inherent to the thickness part of
the soiution, since in the slender body limit, Hoffman and
Platzer (Ref. 12) have shown that the unsteady pressure remains
regular. It is shown in Appendix C that this finding also
applies to not-so-slender bodies. Hence, to circumvent this
singularity in the formulation, the obvious choice is the body-

fixed coordinate system.

2.2 Body-Fixed Coordinate System
As shown in Fig. 3 the body-fixed coordinate system requires
that the x—-axis remain, at all times, the axis of the body,
whereby each right cross section is circular and contains the r-
axis.
Let h(x,t’) be the instantaneous normal displacement of the

body, i.e.

h(x,t’) = & etkt’ g(x) (2.19)

The full potential in a cartesian coordinate system (x,y,z)

(see Appendix A) can be written as:

Q(x,y,z,t) = x + h (x,t)z + ¢®(x,y,z,t) (2.20)

The linearized equation for ¢ as derived in Appendix A 1is

11




Clearly, it can be seen that the linearized equation in the body-
fixed coordinate system is different from the one obtained in the
wind-fixed system.

As derived in Appendix A, Eqs. (A.18) and (A.19), the
governing equations for ¢, and ¢, for a body of revolution in the

cylindrical coordinates (x,r,®) are

—

(l - Mi) ¢Oxx + ¢Orr + F ¢0rr =0 (222)

S| —

(L - Mf.) ¢lxx + ¢lr‘r = ¢lr

1 .
- r—z' ¢]_ - 21kMi¢1x + Mik2¢1 Gl(g,¢0) (2-23)

where G, represents the mean flow and the flexible mode

interaction and is given by

1} 9 R .
Gl(g)¢()) = Mi (:26_;(¢0r - r¢0x&')<g + lkg)

- (9o, - r¢oxg_x)(gk2 + g’,)j, + rg—g(¢oxg,’)

+ 8 (douxl — bo;) 12.24)

12




Eq. (2.23) contains Van Dyke’s (Ref. 10) steady angle of
attack equation and Hoffman and Platzer's (Ref. 18) low-frequency
equation as special cases. It should be pointed out that Eq.
(2.23) for steady angle of attack differs from McCanless’ (Ref.
19) equation which is clearly in error since his formulation
starts from a linearized equation rather than the full potential

equation.

2.2.1 Boundary Conditions

The boundary conditions at the apex are the same as those
given by Eq. (2.9), while the tangential boundary condition in
the body-fixed system states that the relative normal velocity of

a fluid particle to the body surface is zero at any instant, i.e.

(¥Q - Vy)en = 0 at S = 0 (2.25)

where V, is the velocity of the body surface, § is the body
surface which for a body of revolution in a cylindrical

coordinate system can be expressed as
S = r-R(x) = 0 (2.26)

and n is the outward normal to the body surface. For a body

performing bending oscillations, V; can be shown to be

—

Vy = 3(t)[g’ Rcos®© ;x - g(cos® ;r ~ s1in® ;e)] (2.27)

The total velocity in this curvilinear coordinate system is

obtained (see Appendix A) as

13




vQ = [1 + @5, - 8(t) g’ ¢,,Rcose + 6(t)¢1xcose];x

+ [@g, + 8(t)¢, . cos® + g’ §(t) cose];r

—

- 5(t)[g’ sin® + 1 ¢, sin®]e

" (2.28)

e

Now substituting Eqs. (2.28) and (2.27) into (2.25) yields
[1 - 8(t)g’’ R cos® + ¢,, + 6(t)¢, cos®
- §(t)g’ R cos8](- R’) + ¢,,

+ 75(t)g’ + &(t)g,. + &(t)g) cos © = 0 at r=R(x)
(2.29)

where for simple harmonic oscillations 3(t)=ik6(t) and
§=d,eikxt . Substituting this relation into Eq. (2.29) and

collecting like terms of order one and é,, yield

4, - R'¢y, = R’ (2.30)

¢, ~ R'¢,, = - g’-ik(g + ¢’RR’) - g’ ’RR’4,,

at r=R(x) (2.31)

Eq. (2.31) reduces, to the Lighthill’'s (Ref. 20) boundary

conditions when the second-order terms are neglected.
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2.2.2 Pressure Coefficient

The exact isentropic pressure coefficient can be expressed

as

o1 v/v-1
Co = 74z {[1 - Mz (V)2 + ZQt.-l)] -1 } (2.32)

where t’' is the nondimensional time in the wind-fixed system.
The partial derivative with respect to t’ as measured by an
observer moving with the harmonically oscillating body-fixed

system is given by

aQ  _ 9 _ ., aQ . Q@ _ 1 . _a8Q
3% ° 3F g J(t)rcoses; + g&(t)(coseg; © sinézg
(2.33)

Note that Eqs. (2.22), (2.31) and (2.33) contain Revell’s
equations (Ref. 21) for rigid-body oscillations as a special

case.
Substituting Egqs. (2.33) and (2.28) into (2.32) and, after
binomial expansion, collecting terms of order 6, the pressure

coefficient for unsteady flow Cg can be written as

Cé = - 2SO{¢1)((1 t dox) ~ (1 + ¢Ox)g”l:z¢ox
t bor(, * 8") + ik (géy, *+ ¢, - g'Re,, )} (2.34)

at r=R(x)

were S, 1is given by Eq. (2.18) and the pressure coefficient for

the mean flow ce9 by Eq. (2.16).
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Eqs. (2.23), (2.31) and (2.34) together with the Mach wave
conditions at the apex, Eq. (2.9), constitute the formal
formulation according to the body-fixed coordinate system.
However, to soive Eq. (2.23) is rather tedious. For this reason,
a justification for simplified form of this equation is sought.
Van Dyke (Ref. 10) has shown that his "first-order" steady cross

~

flow equation,

(1 - M2) ¢, * &, * % ¢ %? ¢, = 0
is superior in yielding better results to the linearized
equation, which contains one extra term, in the higher Mach
number range. For bodies in low-frequency oscillations, Platzer
et al. (Ref. 8) and Tobak et al. (Ref. 9) adopted the first-order
equation formulation to obtain stability derivatives. Their
results were found in good agreement with computed results using
Euler’s equations. Thus, extending Van Dyke's first-order
equation further in the general frequency domain amounts to
neglecting the interaction terms G, (g,4,) in Eq. (2.23). In this
way, the linearized wave equation is employed for the present
formulation. Admittedly, this level of approximation is
injustifiable mathematically. Nevertheless, the interaction
effect due to the term G, can be recovered formally by a Green

function approach as proposed in Chapter 4.

2.3 Pseudo-Wind-Fixed Coordinate System
The present coordinate system is a hybrid one. The x-axis

chosen here is not the body axis, but remains rigid in motion,

16




thus avoiding the complexity of using the curvilinear
coordinates. Meanwhile, the front-end of the bending mode g(x)
when expressed in this coordinate is required to attach to the
origin of the x-axis at all times, as indicated in Fig. 3. In
this way, the apex singularity can be totally removed.
Admittedly, such a formulation for singularity removal is not
totally justifiable but intended to serve as a regular
approximation.

Hence, the linearized equation can be obtained in the same
form as Eq. (2.23) by letting g(x)=x-x, in Eq. (2.24), and G, is

replaced by G, (g,¢,) as follows

Gz(gi¢o) = Mi {2¢0xr + kZ[r ¢0x - (X—XO) ¢0r + 21k

¢01‘ - r¢Oxx + (x—x0)¢0rx} (2-35)

where Xo 1s a point chosen on the x—axis such that p(0)=0. Since
this equation is a degenerate form of the body-fixed equation,
the justification for neglecting G, terms also remains valid
here. The mode shape g(x) expressed in this system now becomes

p(x), where

p(x) = g(x) - (xy5-%) (2.36)

The potential is split into two components,

¢, (x,r) = v(x,r) + x(x,r) (2.37)

17




where ¢ and » represent the rigid part (x-axis motion) and the

@ flexible part (p(x) motion) of the potential, respectively.
Thus, the boundary conditions, after Taylor-expansion transferal
to the mean surface, become, at r=R(x)

¢ .

vy, - R’ w, = - l-ik(x-x, + RR’) at r=R(x) (2.38)
A\, - R” x, = - p'(x) (1 + ¢4, - ikp(x)
o
+ p(x)é,,, - P(x)R’¢,,, at r=R(x) (2.39)
Notice that Eq. (2.39) is essentially the same as Eq. (2.14)
® of the wind-fixed system with g(x) replaced by p(x). The
pressure coefficients ClT and Céf, corresponding respectively
to y and A, read
®
Cor= - 2S5+ {[(1 + o, )v, + @5, (v, + 1)
+ ik(w - Re,, + (x-x3)d5.)11} at r=R(x) (2.40)

@

and
CLE = = 25,-((1 + #o,)%, + ocd, *+ ikd = p(x)

@

[Poxr * $oxPoxr * ®orPorr]} at r=R(x) (2.41)
where

@

Ci = Cclr 4+ (Cif (2.42)
P P P
o
18




[n the present system p{(0)=0. Therefore, this condition
guarantees, all second-order coupling terms in the bracket of Eq.
{2.41) when multiplied by p(x) become necessarily finite at the
apex.

It should be noted that although the apex singularity is
removed in the pseudo-wing-fixed system Eq. (2.41) is still not
uniformly valid, because these second-order derivative terms will
bear local singularities at other body slope discontinuities such
as the cone-cylinder junctions. In the case of the body~fixed
system, however, such singularities do not appear, since the

unsteady pressures only involve first-order derivative terms.

2.4 Generalized Forces and Stability Derivatives

One of the main purposes of the unsteady aerodynamic
computations is to determine the generalized forces (Q,;,), which
appear in the Lagrange’s equations of motion for the structural
system. There, the generalized force Q,; represents the work
done by the aerodynamic force FJ per unit displacement g! with
all other generalized coordinates fixed.

In the present case, once the unsteady pressure coefficients
as provided by Egs. (2.17), (2.34) or (2.42) are determined, the

generalized forces can be computed according to

1 2n .1
Q,, = I J C:¢J) R[g¢!> + RR’g’(1>])coszededx
Sref |
o o
(2.43)
where g¢!> is the Ith structural mode; Cl¢J? is the pressure

P

coefficient due to the Jth mode of motion and S ,, is the
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reference area of the body. Here, S is defined as the based

ref
area for the open-end bodies and the maximum cross—section area
for the closed-end bodies.

As will be shown in Chapter 5, the generalized forces
resulting from the unsteady flow caused by the changing
deformations of the body surface occur in the equations of
flutt~r. Thus the determination of reliable flutter boundaries
depends on the accurate evaluation of the generalized forces.

Once the generalized forces have been determined the

stability derivatives for rigid low-frequency body motion can be

determined in the following form

Cya = “RE(Q;;) ;

Cya = ~RE(Q,,)

Cya * Cygq = ~IM(Q,)/k (2. 4a)
Cya * Cuq = ~IM(Q2)/k

Cra = “RE(Q;,)/k?

Cys = “RE(Q,,)/k? :

where "1" is the plunging mode and "2" the pitching mode, and RE

means the real part and IM the imaginary part.
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CHAPTER 3

STEADY MEAN FLOW

The purpose of solving the steady mean flow problem is two-
fold. First, it is necessary to obtain the mean flow velocities
on the body in order to proceed with the unsteady flow
computations because the unsteady flow potential and the unsteady
pressure coefficient depend on the mean flow solution. Second,
it is important to establish a robust unsteady computational
procedure, which can be first established by the steady mean flow
studies as a primary step, as the steady mean-flow is provided
with more readily available data for result verifications.

It has been noted that first-order theory predicts the cross
flow more accurately than the axial flow because smaller
disturbances, in the convective direction, are involved. This
suggests that it is more important to refine the axial flow than
the cross flow. In fact this type of hybrid theory has been
suggested previously by Van Dyke (Ref. 10) involving a linear-
equation model for the cross flow and a nonlinear-equation model
for the mean flow.

For the cross-flow model the use of this hybrid theory can
only be justified by previous numerical studies. In the past Van
Dyke (Ref. 10) obtained accurate results for bodies at steady
angle of attack, and Tobak and Wehrend (Ref. 39) obtained results
for the static and dynamic stability derivatives for cones, which
are in good agreement with those obtained based on the Euler’s

solution. Thus, in this chapter, together with the solution of
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the linear equation for the mean flow, Eq. (2.7), a nonlinear
equation for the mean flow is derived. Its solution, by
employing an iterative procedure first suggested by Van Dyke, 1is
presented. In the latter development and for legends in Figures

presented, this unsteady hybrid model is termed "nonlinear”.

3.1 Solution of the Linear Equation
The governing equation for the mean flow as derived in

Chapter 2, Eq. (2.7) can be written as:

(1 - Mi)¢0xx * ¢Orr ¢Dr =0 (3'1)
Along the apex Mach wave and on the body surface the

boundary conditions are:

by = bg, = 5. = O at x - fr < O (3.2)

6o, - R’ @5, = R’ at r = R(x) (3.3)

Since Eq. (3.1) is linear, it admits superposition of
solutions. Therefore, for a body of revolution, whose upstreamn
pointed end is at x=0, the solution to Eq. (3.1) can be sought as
a superposition of supersonic sources along the x-axis. The

potential at (x,r) can be expressed as (Ref. 13)

x-8r
B, (x,r) = —J f(1) de (3.4)
o J(x—!)z—erz

where & denotes the distributed source location along the x-axis

and f(Z) is the source strength at ¢t.
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The velocity components, after differentiation

are given by

By (XyT)

Jx“pr £ (e)de

V(x-t)Z-pgzr2

s}

] —

$or (X, 1)

f X“Ar o —w)f(1)de
. J(x-€)2-pZr2 (3.5)

Eqs. (3.4) and (3.5) satisfy the conditions given by Eq.
(3.2} if f(0)=0 and the source strength function f will be
determined from the tangency condition, Eq. (3.3). This leads to
a Volterra integral equation, which can, in general, only be
solved numerically. The procedure introduced by von Karman and
Moore (Ref. 13) proceceds by replacing the body by one consisting
of a head cone and a sequence of truncated cones. The procedure
is clearly described in the standard texts such as Sauer (Ref.
22) and Ferri (Ref. 23). Its generalization to the unsteady

problems is described in the next chapter.

3.2 The Nonlinear Equation and Its Solution
A nonlinear equation for the mean flow perturbation
potential ¢, (x,r) can be obtained by starting with the full
potential as Q(x,r,0)=x+¢,(x,r). Substituting this expression

into Eqs. (2.2) and (2.3) yields
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; . 1 vr—-1. 1
\1_M°2°"¢Oxx t Porr T T ¢Or = Mi{_2'(¢0xx * ¢Or'r + = ¢Or)

(285« + 98« * #8.)
+ 2¢Or¢oxr(l * ¢Ox) (3.8)

* ¢l.‘)xx(2¢ox + ¢8x) + ¢gr¢0rr]

According to Van Dyke (Ref. 10), Eq. (3.6) can be solved by
an iterative procedure. Letting L{(+) be the left-hand side
operator and R{(+) the right-hand side operator, Eq. (3.6) can be

simply expressed as

L(¢,) = R(g,) (3.7)

where the potential 30 is the first-order iteration obtained by
solving the linearized equation L(30)=0. Making use of this

fact, the right-hand side R($,) can be expressed as
R(;’o) = Mi{ZEOerOr + (2 + (7 - l)MiJBOXXEOx * EOrragr(S'g)

r-1 ~ - - - - r—1 - -,
* 2 ”i ¢Oxx¢gr + 2¢Oxr¢0x¢0r + (1 + —E_Mi)¢0xx¢5x}

For the second order iteration all the triple products in
Eq. (3.8) can be neglected except the term ¢, ,.4%3,., which,
as can be shown from the slender-body theory, is of the same
order as the other two quadratic terms. Thus, the equation for

the second-order iteration can be written as




L(¢0) = Moz. [ZBOxEOr + [2 + (Y-l)Mi] aOxx80x * ;Orr;%r]
(3.9)

To solve Eq. (3.9) Van Dyke’s particular solution v, is employed.

vo = M2{8,, (8, + Nr g5.) - % 83 3 (3.10)

where N=(r+1)Mi/[2(Mi—l)]. It should be noted that v,

when substituted on the left-hand side of Eq. (3.9), besides
accounting for all the terms on the right-hand side, also gives
some triple products involving x derivatives of ¢,. These
triple product terms are of order equal to or higher than those
terms already neglected in Eq. k3.8). Hence, for the second
order iteration, ¥, can be considered as an exact particular
solution. Then, ¢, can be expressed as ¢,=X,+v,, where Xy
satisfies L(X,)=0.

Bath potential ¢, and ¢, must satisfy the Mach wave
condition Eq. (3.2), this dictates that both ¥, and X, should
also satisfy the same condition independently. The problem of X,
is just the first order problem, with the tangency condition Egq.

(3.3) replaced by




Ko, (X,7v) = R°X,, (x,r) = R’ (l+y,, (x,r)) (3.11)

Wy (x,r) at r = R(x)

The complete second order perturbation velocities are found
as the sums of the contributions from v, and X,. Then, the

pressure coefficient can be calculated according to Eq. (2.16).

3.3 Results and Discussions

To demonstrate the present method and to validate its
procedures several computed cases are presented: the mean flow
total velocity for a cone-cylinder, mean flow pressures for a
parabolic~ogive, and an ogive-cylinder-boattail bodies are shown
as examples.

Figure 4 demonstrates that the present linear method yields
correct values for the velocity. It is seen that the present
result i1s in good agreement with the USSAERO result as well as
those obtained by other theories (see Ref. 10) for a cone-
cylinder body. The deviation of USSAERO result on the aft-
cylinder is probably caused by an erroneous wave influence
generated by the lower junction of the cone-cylinder. In Figs. 5
and 6 the linear and the nonlinear results are compared with
those computed by USSAERO code, and by the exact method of
characteristics (Ref. 24), for a 26% thick ogive-cylinder body at
Mach numbers of 2.0 and 3.0, respectively. The nonlinear results
compare very well with those computed by the exact method of
characteristics. It is seen that the nonlinear effect due to the

thickness is substantial from the apex to mid-body.

26




Next, the hybrid theory (nonlinear iterative scheme for the
mean flow and linear for the cross flow) is applied to a 16%
tnick ogive-cylinder-boattail body at Mach number of 3.0 and
placed at moderate angles of attack («,=3.2 and 6.3). Again,
very good correlations are found with the computed results of the
Parabolized Navier-Stokes (PNS) code and the Euler code (Ref. 25)
for both cases in Figs. 7a and 7b. Considerable deviations
between the linear and the nonlinear results are again observed
particularly on the windward side of the ogive part of the body.

It can be concluded that, as long as the flow remains
attached, the present nonlinear method should yield results in
favorable agreement with those obtained by computational methods
in the supersonic Mach number range. This agreement alsc implies
that for the given range of Mach number, body thickness and
angle-of-attack, effects of rotationality as introduced by

supersonic shock waves are nearly inconsequential.
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CHAPTER 4

UNSTEADY FLOW COMPUTATIONS

In this chapter, the method of solution for a uniform flow
over a body performing bending oscillations is presented. The
formulations in the wind-fixed, body-fixed and pseudo-wind-fixed
coordinate systems, as described in Chapter 2, are used. To
compute the oscillatory flow in the cross plane, a line doublet
distribution scheme (see Fig. 8B) is adopted. The strength of the
doublet along the axis is modeled according to the Harmonic
Gradient model for treating wing planforms (Ref. 4) This model
is capable of rendering the unsteady potential solution and its
convective gradient uniformly valid throughout the complete
frequency domain.

To verify the present method, numerical examples for various
body shapes are presented, in terms of unsteady pressures,
stability derivatives, generalized forces, and aerodynamic

damping, and compared with various theories and measured data.

4.1 The Integral Solution
The general integral solution to the unw.teady wave equation,
e.g. Eq. (2.8) or Eq. (2.23), can be obtained by applying the

Green function method.

-1 (XA 3
T F(!)g? K(x-%,8r)de + ¢, (4.1)

$, (x,r)
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. [ 6atsota,n) e) Kix-s, pridnds
A

The function G, (¢, ,g) is the inhomogeneous term of the unsteady
wave equation, G, in Eq. (2.23) or G, in Eq. (2.35) and the area
A is defined in the domain downstream of the Mach wave, emanating

from the apex, excluding the body, i.e.

1A
vy
1A
—

R(x) = 5 2 &/8 , for 0

0 =p 28/ , for 1 2 1«

A
8

The first term of Eq. (4.1) represents the linear unsteady
solution as modeled by the distribution of doublets along the x-
axis, and the second termn, Pas the mean flow-mode shape
interaction.

In the present analysis, we shall drop the term ¢, in Eq.
{4.1) for simplicity. But in principle $g can be included in the
analysis since ¢, is known from the mean flow computation and
g(x) is given. The kermel function K is an elementary solution

of Eq. (2.6) (see Garrick, Ref. 28)

e-ip(x—!) cos\R

K(X_‘y pr) = R

(4.2)

where R is now the hyperbolic distance and is defined as

R = V(x-8)2-§2rZ , 4 = kM2/82 and X = kM_/p2

and F(%f) is the dipole strength to be sought.
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Now, integrating Eq. (4.1) by parts, and making use of the

Mach wave condition at x=8r, yields

r .
b, (%, 1) = = f g;;[F(x—xo)e HX01% s (x,, Br)dx,  (4.3)
X

where

X, COSAR
e] _ 3 0 T
aro(¥o,Ar) = 5% f = 9
8r T
Xo = x-& and R_ = Jr2-pZr? (4.4)
Notice that from this point onward "x," is used to represent

the relative dipole coordinate.

4.2 Harmonic Gradient Model
The solution of Eq. (4.3) is based on a line-doublet panel
method similar to Karman and Moore’s (Ref. 13) procedure for the
source solution formulation to the mean flow. Thus, a set of N
points with coordinates (xj,rj,O) J=1,...N are distributed on

the body surface, such that X;,,7%X;. These points are called the

J
control points. To determine the induced potential at each
control point the intersection of the inverse Mach cone, from the

control point (xj,rJ,O), with the body axis is first determined,

(see Fig. 8). The set of points so obtained are given by
r,,,=x,-fr, j=1,...N, with & being the body apex. The segment
between each two points (#,, #,,,) is called a panel. Each panel
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is assumed to have different dipole strength Fj(t). The

potential ¢, at (xJ, rj) can then be expressed as

e &
-1 X5 i+l 3 —1lux
¢1(XJ,Y'J»): ﬂ' E J‘ sx—‘[Fl (XJ-XO)E 0]
S P S °

4
arjs(xo’ﬁrj)dxo . (4.5)

In order to achieve computational accuracy and effectiveness
for handling solutions in the high-frequency range, it is
important to render the doublet solution and its convective
gradient uniformly valid throughout the complete frequency
domain. This is to say that the characteristics of the doublet
solution should be spatially harmonic. Therefore, the panel size

from &, to & is regulated and maintained compatible to the

il
wave number generated along the body in oscillation (see Fig. 9).
This is the Harmonic Gradient concept introduced by Chen and Liu4¢
for unsteady supersonic computations. Following this concept,

one can model the integrand of Eq. (4.5) in a similar manner,

i.e.,

]

S — [F, (x,-xp)e ™¥0] = [a, (x,-x,) + b Je ¥ (4.6)
[o]

where a, and b, on the right-hand side are complex constants

representing a linear-harmonic doublet gradient.
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4.3 Evaluation of Velocities

With the Harmonic Gradient (H-G) model of Eq. (4.6), Eq.

{4.5) can be differentiated to obtain the discretized velocities

¢1x and ¢ll" i.e.

. -1 X780 -iux,9
¢1x(XJ,rJ) = 5 alj e 5?_S(xo’5r3)dxo (4.7)
1 =1 XJ—gX J
X, — &, _
; _ -1 3 i+l ~iux
SEARTFRLERE 2 E J (a, (x;-%4) + b, le ©
1=1 Xj_gx
a2
37z S(xo,8r,)dx, (4.8)
J

For detailed evaluation of these integrals one is referred
to Appendix B. There it is shown that Eqs. (4.5), (4.7) and
(4.8) can be integrated numerically by employing Lashka’s (Ref.

27) exponential substitution scheme.

4.4 Method of Solution
After Eqs (4.5), (4.7) and (4.8) have been integrated, the
potential and the velocities at (xj,rj) can be expressed as
functions of the a,’s and b,’s. However, the b;,’s can be
determined as functions of the a,’s by imposing the condition

that the potential must be continuous between each two adjacent
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panels. With this condition the following recurrence formula can

be established, i.e.

n-1
by = gh(l-e’ Z S ICHEEREE TRl (4.9)
J=2
+ 3] - o1#faon n o> o1
1u !

where b, =0 is due to the application of the apex Mach wave
condition.

Since the b;’s are expressed in terms of a;’s, the latter
can be evaluated by applying the tangency condition at the
control points. In matrix form this condition can be expressed

as

(W;;] {a;} = {B;} (4.10)

where (W;,] can be expressed as [Vji]—R’(xj)[Uji] and V;, and U,
are the velocity influence coefficients in r and x directions
respectively of the oscillatory flow at X;, r; due to the panel
i. The right-hand-side of the tangency condition evaluated at
the control point j is denoted by {BJ}, which represents the
given downwash.

In supersonic flow, the governing equation is hyperbolic,

the problem becomes an initial value problem; hence the matrix

[le] is a lower tridiagonal one. The solution method for
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solving the system of equations given by Eq. (4.10) is
straightforward.

Once the {a,} are determined, we can compute the velocities
and the potential at the control points and therefore the
unsteady pressure coefficient. Once the unsteady pressures have
been determined, the generalized forces, can be determined by

using Eq. (2.43).

4.5 Results and Discussions
To verify the present method, numerical examples are
presented in terms of unsteady pressures, stability derivatives,
and generalized forces. Free-free mode aerodynamic damping for
bodies in bending oscillations are presented for various

configurations, including that of the Saturn SA-1 launch vehicle.

4.5.1 Results According to Various Coordinate Systems

Figures 10, 11 and 12 present the in-phase and out-of-phase
pressure coefficients of a 10% thick cone at Mach number M°° =2.0
and reduced frequency k=2.0 in the wind-fixed, body-fixed and
pseudo-wind-fixed coordinates. The oscillating cone performs in
pitching mode, first-bending mode and second-bending mode,
respectively. Free—-free mode beam theory was used to determine
these modes. For the rigid mode oscillation in Fig. 10 the
pseudo-wind-fixed and the body-fixed systems become identical;
thus only one result is presented.

In general, the results of the body-fixed and the pseudo-
wind-fixed systems and those of the slender body theory (Ref. 6)

are in good agreement. In contrast to these results, the in-
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phase pressures of the wind-fixed results persistently show the
effects of the apex singularity in all cases, as expected.
Consequently, the overall pressure distributions downstream are
contaminated by this singular behavior originated from the apex.
It is noted that when the oscillation center x; is placed at the
apex, or the mode shape g(x) at the apex is zero, the apex
singularity disappears and all wind-fixed results are in close
agreement with the others. Also, it can be observed that the
pressures due to the flexible modes are one order higher than
those of the rigid mode, and that the out-of-phase pressures
resemble the mode shape. The reason for this latter behavior can
be simply analyzed from the slender body limit. There, the out-
of-phase pressure, as shown in Appendix C, is proportional to
(R(x)g(x))' and because R(x) goes to zero at the apex, the
dominant term is R’(x)g(x).

From Figs. 13 through 18, generalized aerodynamic forces on
a cone, a parabolic-ogive and a cone-cylinder oscillating in
first and second bending modes with reduced frequency of k=2.0
are plotted versus freestream Mach number. (Due to the
singularity originated from the apex, the generalized forces
resulted from the wind~fixed coordinate system will not be
presented here.) As expected, the present results approach the
slender body results in the decreasing order of thickness.

While the pseudo-wind-fixed and body-fixed results are in
satisfactory agreement, their deviations increase with increased
Mach number and thickness. In Fig. 18, the sudden departure of

the pseudo-wind-fixed phase angle (argument) could be caused by

35




the mode~-shape/expansion-fan interaction which is further
amplified by the second derivative term ¢, .. In general, it can
be observed that again higher order modes result in higher value
of generalized forces. For example, the magnitude (modulus) of
the generalized forces for the second bending mode is about twice
that of the first one.

In terms of the effects of Mach number, it can be seen that
when the Mach number approaches the low supersonic regime, i.e.
M_=1.5, all magnitudes increase rapidly. This
trend is similar to that obtained for rigid modes. When
approaching the higher Mach number range, the changing rate of
the force magnitudes appears to be less sensitive to the Mach
number for a given body thickness or given mode shape. Similar
trends, in the high supersonic Mach number range, are found in
the solution to Euler’s equations for steady flow.

To simplify the matter, in the following sub-sections, only

results in the body-fixed coordinate system, are presented.

4.5.2 Effects of Frequency

In the low frequency limit, the damping-in-pitch moment
coefficients for a parabolic-ogive, an ogive-cylinder and a cone-
frustrum body are presented in Figs. 19, 20 and 21. Throughout
the supersonic range the present results are found in good
agreement with those of Platzer’s (Ref. 8) linearized method of
characteristics (LMOC), Tobak and Wehrend’s (Ref. 39) cone theory,
which are limited to the low frequency domain, and various
experimental data (Ref. 8). Across the frequency range, the

magnitude and the phase angle of the generalized forces Q,; for a
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cone and an ogive in pitching motion are presented in Figs. 22a
and 22b. The force magnitude increases with increased frequency,
whereas the phase angle is less frequency dependent. Notice also
that the effects of body shape become apparent in the high
frequency range. All results merge in the low frequency limit.
Similar trends were found in the sonic-flow studies by Landahl
(Ref. 28}.

In the high frequency limit, Fig. 23 presents results of the
present method compared against the piston-theory (Ref. 29)
results for a very slender parabolic ogive. The thickness ratio
t=.02 for this case is selected baased on the order analysis
tM _k«l and M_k>1.0 as required by the piston theory. For M _= 1.5
the agreement seems to be very good for the two selected reduced
frequencies, k=4.0 and 7.5. It is also interesting to compare
the effects of frequency and flow dimensionality on unsteady
pressures. Figure 24 shows comparisons of unsteady pressure
coefficients for a 5.7° cone and a flat plate pitching about
the apex at M“=2.0. The flat plate results are computed by the
LPP code (Ref. 30). As expected, the unsteady pressure magnitude
for an oscillating cone is smaller than that of a flat plate at
k=1.0 and k=2.0. Similar to the case of steady supersonic cone
and wedge flow, the present finding shows that the cone in
oscillation yields weaker compression than the flat plate as a
result of the three dimensionality of the flow, irrespective of

the oscillation frequency.
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4.5.3 Nonlinear Recults

The effects of the nonlinear mean-flow in the unsteady
aerodynamic forces, are presented in Figs. 27 and 28. In these
figures the legend "Present HPP" represents the HPP linear
results to distinguish them from the "Present HPP nonlinear”
results. It should be noted that the latter results are obtained
based on the unsteady hybrid approach developed in Chapter 3.

Figure 27 shows that a good agreement of HPP nonlinear
results with Brong’'s (Ref. 31) exac: Euler unsteady results is
obtained for the pitch-damping forces for a cone. The linear
results deviate from the nonlinear ones as the Mach number
increases. The nonlinear effect is enhanced by either increasing
the hypersonic parameter M_7 or by decreasing the Mach number
toward the tramsonic range.

Figure 28 shows that the present HPP methods are in fair
agreement with the measured damping-in-pitch moment coefficient
for a 20% thick ogive-cylinder throughout the Mach number range.
The computed results of SPINNER code (Ref. 32) and Ericsson’'s
{Ref. 32) show large discrepancies with the measured data; in
fact, weak dependency on the Mach number range was found in these
results. By contrast, strong Mach number dependency is shown in
the results of the HPP code, which show a favorable trend with
the measured data. However, no appreciable difference is found
between the HPP linear and nonlinear results for this case.

From these figures, it is seen that the unsteady
aerodynamics can be altered substantially by the mean flow

influence through the tangency condition and the pressure
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coefficient. These improved results prompt further development

of the nonlinear method for aeroelastic applications.

4.5.4 Elastic Bodies

Next, computed results of the HPP method for an elastic
cone-cylinder body are compared with the aerodynamic damping data
measured by Hanson and Dogget (Ref. 14) where the aerodynamic

damping derivative is defined as

. _ I.(Q,,.)
C, = Z2ku(C,/C.,.) = = ~17ELL— {(4.11)
and 4 is the mass ratio. Physically, this coefficient, C;,

represents the ratio of aerodynamic damping to the critical
damping. The reduced frequency of the first bending mode (Fig.
29a) lies in the range between 1.12 to 1.6 corresponding to
M”=3.0 to 1.5. For the second bending mode (Fig. 29b), it lies
between 2.9 and 4.2 for the same Mach number range. It is seen
that the present results establish close trends with the measured
data. By contrast, all quasi-steady theories yield inferior
predictions. Due to an inconsistent formulation, in their
boundary condition, Bond and Packard theory (Ref. 11) results in
considerable discrepancy with the measured data, as can be seen
in Fig. 29b.

Aercelastic analysis of the Saturn SA-1 launch vehicle are
presented in Figs. 30 and 31. Steady mean flow pressure, and the
in-phase and out-of-phase pressures for the vehicle in rigid mode
are computed in Figs. 30a to 30c. The in-phase and out-of-phase

pressures practically follow the same trend as that predicted by
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the slender body theory. Clearly the deviation between the
slender body results and the present HPP results are due to the
inclusion of the Mach number and the thickness effects in the
latter approach.

The mode shape determined by experiments at NASA-Langley
{Ref. 15) 1is used as input to compute the aerodynamic damping
coefficient. This coefficient is now defined as
C,= -Im(Q,,)/nkn, where "3" denotes the first bending mode and
7 1s a parameter involving the body shape and the mode shape
{n=1.763, see Ref. 15). The natural frequency for the actual
vehicle is 2.8 Hertz. However, because of the large reference
length, the reduced frequency k lies between 1.4 and 2.53 for a
Mach number range of 3.0 to 1.2, respectively. Therefore, the
present case of study needs an accurate prediction method in the
high-frequency range. Again, good agreement is found between the
present results and the measured data. To model this complex
configuration, less than 100 panels were used in the prescribed
frequency range. Consequently, only 30 seconds of CPU time in an
IBM 3081 were needed to obtain all the data reported in Figs. 30

and 31.
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CHAPTER 5

FLUTTER COMPUTATION

One of the main applications of unsteady aerodynamics is the
computation of flutter. The phenomenon of flutter is a result of
an interaction of aerodynamic forces and airframe response in
such a way that the structure receives energy from the airstream
rather than giving it up as damping. In this chapter the flutter
boundaries for a 7.5° cone, in pitching and plunging oscillations
are compared with experiments and different theories for
different Mach numbers. The effects of the nonlinear mean flow
are studied.

For the same cone the divergence boundary as a function of

the Mach number is presented.

5.1 Flutter Equations
The equations of motion for a body in plunging and pitching

oscillations as shown in Fig. 30 can be shown to be

N

1 h(t)
mh(t) + S_a(t) + K h(t) = -3 pnui[o“ T+ lea(t)]sref
1 h(t)
Sh(t) + I a(t) + K a(t) = -5 aniL[QZlL— + sza(_t)]srefJ

(5.1)

where h(t) and a(t) are "he generalized coordinates for plunging
and pitching respectively and are defined positive down for h(t)

and clockwise for a(t).
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For harmonic oscillations h(t) and «(t) can be expressed as

h(t)=hoe1wt and a(t)=<xoelwt Using the conventional notation for

the flutter equations we let K ,=mwZ, K =I wi, p=m/mp LE(L)2 and

r2=IamL2, where w, and w are the natural frequencies of the body
in plunging and pitching oscillations respectively, g is the mass
ratio, and r. is the dimensionless radius of gyration about the
pitch axis.

Eqs. (5.1) can now be expressed in a matrix form as follows

1 - (21)2.(22)2-l Q, a 19, h{t)
W w 2 uk? L 2 upk2 L
= {0}
Xo—X w2
S Tx 1@y, r2 (l-—) - 1Q, a(t)
L 2 uk? a w? 2 uk?
(5.2)

In Egqs. (5.2) for a fixed Mach number the unknow.s are w, p

oo

and U_, which represent the flutter frequency, the altitude at
which flutter will occur, and the flutter speed respectively.
The U-g method (Ref. 33) is used to determine the flutter
boundary. Complex roots are obtained by introducing the
artificial structural damping factor g, and a root of the
equation represents a point on the flutter boundary if the
corresponding value of g equals zero. Thus Eqs. (5.2) are

replaced by
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1 - /ﬁh.)z A.Z - L Qll o« _1_ le h(t)
W 2 uke L 2 uke T
= {0}
T*a 1 Q 1 q
- = 12 2 —12 1 5
T T ake re =A%) - 5 ZF% {{=(t)
(5.3)
ua 2
where ) = {(—) (1 + ig).

If flutter exists, h(t) and «(t) do not vanish identically.
Thus, for a nontrivial solution to exist requires the determinant
of the coefficient matrix of Eq. (5.3) be set to zero.
Mathematically this amounts to solving an eigenvalue problem.

Solving the determinant for A yields roots (AysA5,...) from
which a new frequency and damping value for each mode are

obtained as follows

W
w = *
i Real (A, )
w 2
g, = (297 Imag(r,)

=3

The velocities corresponding to w, are obtained from k as

Since the generalized forces are functions of k the

eigenvalue problem can be solved for a number of k’'s to obtain




(w,,g,,U0, ) for each k and plot a root locus (U-g) diagram. The

zero crossing of a g locus denotes a flutter point.

5.2 Flutter Results

For a 7.5° cone at Mach numbers M_=2.0 and 3.0, the flutter
boundaries in terms of flutter speeds and flutter frequencies
versus the wind-off frequency ratio are presented in Figs. 31 and
32. Two rigid modes, plunging and pitching, are investigated.
As reported in Ref. 16, the measured data were obtained in order
to evaluate the sufficiency and the applicability of the then
existing unsteady theories for flutter analysis, namely the
quasi-steady (Q.S.) approaches (Refs. 10 and 13) and the
frequency expansion theory (Ref. 7). For this reason, the
reduced frequency range is confined to one below 0.4 so that the
compared quasi-steady theories can be valid. While all methods
yield rather accurate flutter frequencies, it is seen that the
quasi-steady method fails to predict the flutter speed
consistently with the measured data. The present method however
consistently slightly underpredicts the flutter speed, whereas as
expected the slender body theory predicts the most conservative
boundary.

In order to investigate the effects of the nonlinear mean
flow, the flutter boundaries for the same cone are now presented
in Figs. 33 and 34 versus the Mach number for a wind-off
frequency ratio of wh/wa=1.8. From the comparison
with the measured data (Ref. 16) it is seen that consistent
improvement in trends are obtained over the linear ones.

However, the predicted boundaries become less conservative in the
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order of slender body, the HPP linear and the HPP nonlinear

results.

The phenomenon of divergence is inherent to the static

aercelasticity. Divergence occurs when the static moment created

by the aerodynamic forces equals the elastic moment

ref Ja &

In Ref. 16, the divergence parameter is defined as

2LqrR(L)2 _ 2

K Yo
—L

< EP

In Fig. 35 the divergence boundary for a 7.5° is presented
versus the Mach number. Interestingly, the nonlinear results
behave like the slender body results in this case, whereby the

former show little dependency on Mach number up to M, =5.0.

45




CHAPTER 6
ASYMMETRIC BODIES

In this chapter, the formulation for an asymmetric body
performing bending oscillations is presented. The differential
equations, boundary conditions, and pressure coefficients in the
body-fixed coordinate system are properly formulated, and the
solution of the first order equation, using a spline panel
method, is obtained. Comparisons of the steady and unsteady
pressures, forces and moments for conical bodies of various cross

sections are made with other methods, whenever available.

6.1 Formulation
As shown in Appendix A, Eq. (A.7), the full potential in the

body-fixed system for asymmetric bodies can be written as
Qx,y,z,t) = x + h (x,t)z + ¢(x,y,2,t) (6.1)

The linearized equation for the perturbation potential ¢
obtained by substituting Eq. (6.1) into Eqs. (2.2) and (2.3) is
given in Appendix A by Eq. (A.13). There it is also shown that
the governing equations for ¢, and ¢,, in cylindrical

coordinates, are given by

1 1

(1-M2)85ux * %orr oy for * 7= ¢oee =0 (6.2)
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1

™ ¢1r

(I—Mi)¢lxx + ¢lrr r

1 .
*or #ige ~ 21KM2Z g, + M2k2g, = G,(g,4,) (6.3)

where G,(g,¢,) represents the mean flow and flexible mode
interaction (like in Chapter 2 Eq. (2.23) for bodies of

revoluticn) and is given explicitly as a function of g and ¢, in

Appendix A, Eq. (A.17).

6.1.1 Boundary Conditions

The condition at the apex Mach wave for asymmetric bodies is

given by
$c6 = %ox = %or T $og = O
at x £ fr (6.4)
¢1:¢1x:¢1r=¢19=0

and the condition of the velocity to be tangent to the body
surface at all the times can be expressed (the same as Eq. (2.25)

for bodies of revolution) as

(vQ-V,)+n = 0 at S = 0 (6.5)

where V, is the velocity of the body surface and is given by

-

Vg = 8(t)[g’R cos 6 e, - g(cos ©® e, - sin © ee)] (6.6)
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S the body surface and n the outward normal to S. In the body-

fixed coordinate system the body surface S is simply given by

S = r - R(x,6) = 0 (6.7)

The normal n is then obtained as

8 = - R e, + e_ - ; (6.8)

o 20}
1

The total velocity VQ is given in terms of the perturbation

potential ¢ in Appendix A, Eq. (A.8) as

vQ = (1 + & - h,z0 ) e, + b e, + (h, + & ) e, (6.9)

b A 4

Now, expressing Eq. (6.9) in cylindrical coordinates and

letting

¢(x,r,0,t) = ¢,(x,r,8) + 5(t) ¢,(x,r,9) (6.10)

Eq. (6.9), when evaluated at the body surface, becomes

vQ = [1 + g5, (1 - 8(t)g’*Rcos®) + &(t)g,,le

X
+ [gor * 6(t)g,, + 8(t)g’cosOle, (6.11)

[é¢09 + 5(t)%¢19 - 5(t)g’sin6};e at r=R(x,®e)

Now substituting Eqs. (6.11), (6.8) and (6.6) into Eq. (6.5)

and collecting like terms of order one and §, yields
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el

$or ~ Rydox ~ gz fog = R at r = R(x,9) (6.12)

o)

e 3 3 : H
$r ~ Rx¢‘.x - Rz ¢16 = - RRx(g ¢0x+1kg ) cos ©
He
- (g’ + ikg)(cose + T 5in®)

at r = R(x,8) (6.13)

These are the boundary conditions for the mean flow and the
cross flow for bodies of arbitrary cross section. It can be seen
that when the body under consideration resumes its axisymmetry,
(i.e. R9=0) Eqs. (6.13) and (6.12) reduce to Eqs. (2.30) and

(2.31) respectively.

6.1.2 Pressure Coefficient

The relation between the time derivative in the wind-fixed

system, t’, and the body-fixed system, t, is provided by

aQ  _ 90 _ , S N . aqQ 1 . N
W = H g J(t)r 5? cos© + gé(t)(cos (2] —"ar F sin © a———e
(6.14)

Now if Eqs. (6.10) and (6.1) are substituted into Eq. (6.14)
(recall that h(x,t)=g(x)é ei*t) and retaining only up to linear

terms in 5, yields
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Q
O

= 5(t)g,(x,r,8) - g’ 8(t)ré,(x,r,8)coso

[e%)
ol

+ 5(t)g(g,,co80 ~ = ¢,.5ine) (6.15)

‘\/"

Substituting Egs. (6.15) and (6.11) into the exact isentropic
pressure coefficient as given by Eq. {(2.32) and performing

binomial expansion according to the small parameter 5§y, we obtain

C, = €3 + &(t) C} (6.16)
here €9 = -2 (s} -1 6.17
where P - —)MT o ] ( . )
and C} = - 28, {(1+¢,,) (9, ,~Rg’*#y,c080) + ¢,,. (¢, . +g’cosO)

1 1 o o _
* gPog(fPig 8 5in®) - ikRg’4,,cos0 + ikg,

+ ikg(¢,.cos® - % sin6¢08)} at r=R(x,9) (6.18)

where S, is now defined as

. -1 . 1
S = (r - TME.(2¢Ox + ¢§x + ¢Sr + RZ ¢89)]

The generalized forces will be given now by
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-1
Srﬂ.t’

27 .1
Q; J J CL¢?2[(g¢1> + g’¢1) RR, )Rcos® +
0 0

g‘I>Resin6] dxde (6.19)

Once the generalized forces are determined, the stability
derivatives can be obtained from Eq. (2.44), in the similar

manner as to determine those for axisymmetric bodies.

6.2 Mean Flow Solution and Results

To establish a robust unsteady computational procedure for
asymmetric bodies it is more appropriate to investigate first the
method of solution of the mean flow since there are more
available data for result verification. The mean flow problem is
governed by Eq. (6.2) with the boundary condition Egqs. (6.4) and
(6.12).

If the velocities are to be single-valued function the
dependency on the polar angle © must occur through factors
cos(n®) and sin(n®), where n is an integer. The elementary
solutions in this form that satisfy Eq. (6.2) were ob.ained by

Ward (Ref. 34) (Chapter 9, Eq. (9.3.22)) as

X-8r
COS(De)j 1 L {(X—§+J(X‘§)2_p2r2)n

¢;"(X,r‘,9) = - Sin(ne) R (pr)n 2

f (%)
V(x-&)2-pg2r2

+ (x-&8-/(x-€)2-p2r2)n} dz
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The potential given by Eq. {(6.20) can be considered as a
distribution along the body axis of ‘vortex multiplets’ of
strength f_{&). For the case n=0 Eq. {(6.20) reduces to Eq. {(3.4)
representing a distribution of sources as presented in Chapter 3.
Since Eq. (6.2} is linear a general solution can be obtained by
superposition of elementary solution, thus ¢,(x,r,8) can be
expressed

N
4
6, xir,0 = ) 8, Txir,e) (6.21)

a=0

The functions f_ (&) that appear in Eq. (6.21) should be obtained
from the boundary conditions. But, before a numerical procedure
to determine them is developed, it is convenient to estimate the
magnitude of the different terms in the integrand of Eq. (6.20)
to see if convergency difficulties can arise during the numerical
solution. It can be seen that the terms [x—&+/(x-&)2-2r2]n and
(x-€-y(x-8)2-82r2]n are of order 1 since x is defined between 0
to 1; however the term 1/(fr)" when evaluated at the body surface
is of order 1/%%, where v is the thickness of the body. Thus,
for thin bodies this term can be very large if the total number
of elementary solutions, N, is large. For example for a 10%
thick body if N is 12 those terms are of order 1012, Therefore,
if the velocities have to be of the order of the thickness =
means that the functions f_ (&) must be of order 10-!3. This
implies that numerical difficulties should be expected if Eq.
{6.21) is used to solve for the mean flow potential ¢,. To make

the term 1/z¥ small the body thickness t has to be large, which
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1s in contradiction with the assumptions of small disturbances,
or N has to be small. Since N will depend, in general, on the
body cross section, this latter condition can not be guaranteed.
Thus, the application of this method to develop a robust
computational method should be disregarded.

Thus, Eq. (6.2) should be attempted to be solved by a method
that guarantees N to be small. Eq. (6.21) can be considered,
with respect to the dependency on 8, as if the mean flow
potential ¢, is fitted by cos(n®) and sin(n®) functions in the
interval 026%<2r. Drawing the analogy of this method with the
curve-fitting method would be like if in the latter a polynomial
of Nt*h degree were used to fit a function s(x). However it is
known that if a spline fit is used the curve s{(x) can be fitted,
with good accuracy, by piecewise low order polynomials. Thus, if
the concept of the spline fit is used to solve for Eq. (6.2) it
will amount to divide the body into interval along the ©
direction, 1i.e.

0 =8, <8, ¢C...C © < 8, < 86 <...< © < 0 = 27, each

i 2 J -1 b 1+ 1

interval defined by 40 =96 -9, {see Fig. 36). On the interval

+1

A8 , the potential ¢, ca be expressed, i.e. as

2
‘n
¢, ,(x,r,8) = Z P, (x,r,®) , 6 <0x8e 16.22)
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] X—8r .
4. = - cos y Lo x=o)f, (5 4, (6.24)

- AN T SERY ErY

¢ X-gr _ _
- _ cos2e j (ﬁi>2 (2(x-&)2-p2r2)f,,  (£) 4 (6.25)

R J(x-&)2-pg2r2

where only cos(n®) functions have been considered.

On each interval A8, a set of M points is distributed on the
body surface with coordinates (x,,r,,6;,) i=1l,...M, where
ej=1/2(6j+63+1) and r1=R(xi,ej), such that x,<x,,,. Thus, a
total of MxN points on the body surface are located which are
called the control points. From each control point the
intersection of the inverse Mach cone with the body axis is

determined, to obtain &,  ,

=x,-fr; with &  being the body

J

apex. The interval &, , to & is called a panel. On each

i+l,3J

panel the strengths of the sources (fo,3>’ dipoles (fl.J) and

quadrupoles (f, ) is assumed to vary linearly, i.e.

£y, ,(8) L85+ b

1
[+}]

f,,,(8) = ¢, & + d, Po<E<E

f2,1(!) = e &+ 2

[f the condition that the functions fo, f and fz,J must be

j, l,J‘l

continuous between each two panels is imposed, the constants bx‘J

can be expressed as a function of a, blyj, and 4, , of ¢  ,,

d L and £, of e , £

\ The constants b
i s 1,0 1,

d, and £

1,50 3! 1. 3

can be shown to be zero when the boundary condition at the Mach
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wave emanating from the apex is satisfied. Thus the potential at

the control point x_,, r_,, ©, can be shown to be after integration

- {allj{(xn—i)cosh‘l(illi)

?s (Xn,rn,é ) = AT,

J

8 ~10

1 =1

- J(xn—E)Z—ﬁzr’g‘} . [(2@)?—\/{‘ (Xa-E)2-p2r3

- ﬂrncosh‘lzﬁiflcoséJ toe; E%“
LGt VO 70 )2
3 Br, )
- ( ppm )3}
X, ~&E)+V(x —&)2-p2r2
+ Ar,
(x, ~&8)+/{x,-€)2-p2rZ
(Xn_g)+J(xn_!)2_p2rg _ Eifl,J
- T )]cos(zej)}
. 0.,
(6.27)

The velocities in the x,r,® directions can be obtained by
applying the derivatives with respect to x,r, and © respectively.
Thus, the mean flow potential and velocities can be expressed as
function of 3MxN unknown constants a,

c and e, i=1,...M,

;b J3? 1 J )y J

j=1,...N. If the conditions that the potential as well as the

tangential velocity in the 6 direction must remain continuous
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between adjacent intervals i.e. 46, to A®;,, are imposed, a set

of 2MxN equations relating a, ., 5y S and e, , are obtained.
These equations can be used to express, i.e. the C:,J’s and the
e, ,’ s as functions of the a, ,’s. Now, by satisfying the

J

tangency condition at the control points the ai'J’s can be
determined. Once the ai,J’s are known, the velocities at the
control points can be evaluated and from Eq. (6.17) the pressure
coefficient.

It should be noted that the number of elementary solutions
chosen, three in the above description, can be altered. For
example, if instead of imposing the continuity in the tangential
velocity in the © direction, only the potential is required to be
continuous between adjacent intervals, only two elementary
solutions, i.e. sources and dipoles need to be considered on each
interval. Also any other set of vortex multiplets, instead of
sources, doublets and quadrupcles, can be used and the type of
vortex multiplets used can change from one interval, ae,, to the
next 46;,,. This method can be called spline panel method.

The simplest application of the method of solution described
above is if only one elementary solution on each interval is
considered. In that case, the potential and its derivatives in
the 6 direction are not continuous between adjacent intervals.
The best choice of elementary solutions is the source
distribution, since it is known to be the exact solution of the
mean flow potential for bodies of revolution. Thus, the use of
source singularities of different strength on each interval A8,

amounts to treating locally the body as a body of revolution with
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radius R(x,ej). Therefore, some restrictions regarding the
arbitrariness of the body cross section at which this first
approximation can be applied, should be expected.

In the Fig. 37 the mean flow pressure for a conical body at
Mach number M_=2.0 whose cross section varies as cos® is
compared, at x=1, with Devan’s results (Ref. 35), and USSAERO
results. It can be seen that except in the region ©°<6x<30°, the
agreement seems to be very good with both methods. The deviation
in that region we believe is due to the use of only one
elementary solution on each interval. However it is seen that
this small deviation does not affect in the prediction of the
axial and normal forces when compared to the other two methods.
The small difference between Devan’s results and USSAERO results
can be due to the different method used to solve the differential
equation. The first used the finite difference method while the
second used the panel surface method. The computer time taken by
these two methods is at least one order of magnitude larger than
the present method.

In the Fig. 38 the mean flow pressure for a conical body of
circular cross section for -n/228%<r/2 and elliptical, with
ellipticity ratio 1/2, for »n/2<6<3/2n at Mach number M”=2.0 is
compared with Devan’s (Ref. 35) and USSAERO results. It can be
seen that a slight deviation occurs overall the values of © when
compared to the other two methods and the normal force
coefficient has a difference of about 6%. However the axial
force coefficient is very well predicted. The reason for the

discrepancy is that an ellipticity ratio of 1/2 is, too low for
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the present method to produce accurate results. As will be shown
later for ellipticity ratio of 0.75 to 1.3, the present method

gives good agreement when compared to USSAERO results.

6.3 Unsteady Flow Solutionmn and Results

The unsteady flow problem is governed by Eq. (6.3) with the
boundary conditions Eqs. {(6.4) and (6.13). Like for bodies of
revolution, Chapter 4, only the homogeneous unsteady wave
equation will be solved. The term G,(g,¢,) can be taken into
account in a similar manner to that described for bodies of
revolution Eq. (4.1).

To extend the method described in the previous section to
unsteady flow it is necessary first to obtain a general

elementary solution, equivalent to Eq. (6.20) for the mean flow,

for the unsteady flow. This solution can be assumed in the form
¢n cos(ne) [XPT ~ip(x-2) cos(r/(x-E)Z-p2r2)
$1 (x,r,8)= = Cin(ne) Fo(f)e
o J(x-€)2-p2r?
m(cosh-1 (X2£); n) ds (6.28)

sr

~ip(x-2) cos(vy(x—-#)2-82r2)
V(x-¥)2-g2r2

where e

represents the kernel

for a distribution of unsteady sources along the body axis, and

it is known to satisfy the equation (see Garrick (Ref. 26))
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(1—Mi) ¢1xx + ¢1rr + T Py r
- %; ¢,~ 2ikMZ ¢,  + k2M2 ¢, = 0 when n=0. (6.29)

Thus, in Eq. (6.28) m represents a function of x,r,€ and n
to modify the source kernel so it satisfies Eq. (6.29) for n
different of zero. Then, m must satisfy m{(x,&,r; 0)=1. To

determine m we first make the following transformation in Eq.

(6.28)
£ = x - Br cosh o d&€ = ~ Br sinh ¢ d ¢
X
= = -1
at « 0 o cosh 5T
and at & = x-gr g =0

Eq. (6.28) then becomes

X

¢n e cosh-1(==) . N
¢, (x,r,8) :?:Egeg Ar F,_ (x-frcosho)e iuBrcosho
0
cos(rBrsinho) m(o;n) do (6.30)

To determine m(o;n) the derivatives with respect to x and r
in Eq. (6.30) are determined and substituted into Eq. (6.29). In
this way it can be shown that Eq. (6.30) satisfies Eq. (6.29) if

m’’-n2m=0. Therefore, the solution to this equation together

with the condition m(e;0)=1, implies that m should be
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m{o;n)=cosh(no). Thus, the generalized elementary solution of

Eq. (6.29) is given by

cosh‘l(i—)

(n ( .
¢, (x,r,®) g?i{gg% Ar F, (x-frcosho)e iuprcoshe
0
cos(¥Brsinhe) cosh(no) do (6.31)

Now, the extension of the spline panel method to unsteady

flow can be done by letting

2
(
4, ,(x,r,8) = §¢1’,’J(x,r,e) , e, 2656, (6.32)

where ¢, ; means the unsteady flow potential at the interval j.

¢{® (x,r,8) represents a distribution of unsteady sources along
the body axis, ¢§1 of unsteady doublets (it can be shown that
¢$! is equal to that given by the first term in Egq. (4.1) for
bodies of revolution by integrating by parts), and ¢{2 of
unsteady quadrupoles. The Harmonic Gradient concept needs now to
be applied to the strengths Fo.j(f)’ FI'J(!), and F, (%) in a
similar manner as was done in Chapter 4, Eq. (4.6) for F, (¥§).
The integration of ¢{°, and ¢{2 will not be carried out
here; however it is similar to that shown in Appendix B for
bodies of revolution (which is the same as for ¢{!). Once the
integration is done the method of solution to determine ¢,, and

the velocities ¢,,, ¢,, and 1/r¢19’ at the control points is the
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same as the one described in the previous section for the mean
flow.

Since for the mean flow numerical results were determined
using only one elementary solution on each interval ae;,
consistently the same will be done for the unsteady flow. Thus,
on each interval a distribution of unsteady doublets of strength
FI,J(E) is distributed. Like for bodies of revolution the
doublet strength is discretized along the body axis and the
Harmonic Gradient concept is applied.

For the unsteady flow a set of conical bodies of elliptic
cross section and ellipticity ratio a/b from 0.75 to 1.3 have
been investigated, at Mach number M_=3.0, and compared, whenever
possible with USSAERO results.

In the Figs. 39 and 40 the static normal force and moment
coefficients are presented versus a/b and compared to those
obtained from the USSAERO code. It can be seen that good
agreement is obtained for both coefficients within the range
studied.

In the Fig. 41 the dynamic normal force and moment
coefficients are presented versus a/b. No comparison with other
theories is made since, apparently, this is the first method able
to compute the unsteady aerodynamics, for bodies of arbitrary
cross section, in supersonic flow. At the present time no
experimental data for the unsteady coefficients could be found.
However since the static coefficients, within the range studied,

are in good agreement with the USSAERO results, it is expected
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that the unsteady coefficients should also be well predicted by
the present method.

In the Figs. 42, 43 and 44 the real and imaginary part of
the pressure coefficient for the elliptic cones in rigid, first
bending, and second bending mode respectively are presented at
=0, and reduced frequency k=1.0, along the x axis. In general
we can see that the imaginary part of the pressure coefficient
slightly changes with the ellipticity ratio, and that when a/b
approaches one, the present results approach, as expected, those
obtained for the body of revolution.

In the Figs. 45, 46 and 47, the real and imaginary part of
the pressure coefficient, for rigid, first bending and second
bending mode respectively are presented versus 6 at x=1. The
real part of the pressure coefficient for the case a/b=0.75
deserves some attention. To investigate this behavior the
pressure coefficient for an elliptic cone (a/b=.75) and a
circular cone at steady angle of attack are compared to the
pressure coefficient for a flat plate, obtained from the slender
wing theory (Ref. 5) along the y axis in Fig. 48. Although for
the present time lower values of a/b have not been obtained, it
can be seen that the trend in pressure of the present method is
the same as that obtained from the slender wing theory except in
the region where y/b approaches one, where, for a flat plate, the
pressure becomes singular.

It is interesting to notice that when a/b decreases the body
becomes, as expected, more stable statically and dynamically.

However, from the structural point of view we would say that the
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body becomes more flexible and it might turn out to be more

likely to flutter. Since the present approach has no limitations ¢
regarding frequency or mode shape it can be an excellent tool to
estimate the advantages, from the stability point of view, and

the disadvantages, from the aeroelastic point of view, of letting ¢

the ellipticity ratio to decrease and, thus, to obtain an

optimized cross section body shape.




CHAPTER 7

BUNDLED TRIPLET METHOD

7.1 New Development of BTM

As mentioned in Chapter 6 using Fourier representation of an
arbitrary body shape would introduce a formulation involving
higher-order kernel function, which makes the determinant
evaluation very difficult. On the other hand, the Splined-Panel
Method used in the same chapter has shown limitations on the
degree of asymmetry for bodies, which indicates that this method
may not be general enough to handle arbitrary body-wing
combinations. The proper treatment of the body-wing interference
mandates to generalize the Spline-Panel method to the Bundle
Triplet Method (BTM) in which at least two substantial features
have been added. First, to keep the kernel function in low
order, multiple lines of low order singularities, namely line
sources and line doublets, are employed. Second, by using a
least square procedure, the BTM can account for the
circumferencial influence between panel elements, thus the method
is sufficient to treat bodies of arbitrary cross-sections. As
can be seen in the later computed cases, the results obtained by
the BTM are all in good agreement with existing theories and
measured data.

7.2 Formulation

As shown in Figs. 49 and 50 the body cross section is

divided inte ‘M’ intervals. Each interval contains a finite

sector 44, , where 46, = 6, , - 6,, m =1, ... M, and ¢, = 0,
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1" s "

8p,, = 2m. A three-dimensional "pie" shape is defined by a
portion of the body within the sector 44, whose vertex lies along
the body axis. A line distribution of sources and another of
doublets are superposed along the body axis for each pie segment.
Within each pie segment an integral solution can be expressed as

based on the superposition principle,

X, —fr,
¢, (x, ,r ,o_) = J F,(&)B(x, - &, fr )d#
0
X, ~Br,
+ J Gy (£)3—B(x, - &, pr,)de-cosd, (7.1)
0
xi_prx
a .=
+ J Hm(l)g;—;-B(Xi -, prl)d§~51n0m
0
where (x,, r,, 6,) represents a typical control point lying on
the body surface r;, = R(xx,zm) and Em = (Zm + §m+1)/2. The
kernel function B(x, - f, gr,) can be expressed as
B(x, - &, fr,) = e—lp(xl—!). co;(xR )
[+]
where R, = [(x, - &)2 - g2r 2]1l/2 (7.2)

u = kMZ/g2, x = kM_/p2

Fo/%) denotes the source strength distribution and G_ (&) and

H (&) the doublet strengths distributions in the m'" interval.
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The fact that the doublet distribution has two unknown
functions can be interpreted as that the doublet strength as well
as the direction of the doublet axis are required to be
determined. It is clear now, our triplet model is a "generalized
triplet” in that the singularity strength functions are different
from each other. In the case of F, = G, = H,, the generalized

triplet model then reduces to the regular triplet model (see Ref.
36).

Furthermore, along the body axis, each of the triplet lines
is discretized by N segments where a¢, = ¢ . = - &  for a
given pie sector 44, (See Figs. 49 and 50). Also along the body
axis, different source and doublet strength functions are
discretized as F J(&), G J (%) and H (&) within ag, . The

velocity potential within this sector can then be expressed as

1 £,
$,(x, ,r ,8,) = Z f F, o(8) B(x, - &, gr )ds
j=1 &,
LT 3
s 2 J G, a ()57 Bx, - &, fr,)dE-cosd, (7.3)
Jj=1 g
i,
, 5] , .=
+ E J HJ,m(§) gFlB\xi - £, pr))d5‘51n0m
j=1 £
7.3 Harmonic Gradient Model

To achieve computation accuracy and effectiveness in the
high-reduced frequency and/or the low Mach number domains, it is

essential to render the doublet solution uniformly valid in the
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complete k and M, domains. This can be simply achieved by

modeling the doubliet soclution to maintain spatially harmonic in

the mean flow direction. In so doing,

the panel size AL

is

regulated and is made compatible to the wave number generated by

the body oscillation. This 1s known as the Harmonic Gradient

{H-G)} model introduced in Ref. 4.

Here, the H~G model employed for wings

to combine with the Bundle Triplet solutions.

is adopted

Application of the

H-G model to Eq. (7.3) amounts to stating that in the interval

F, ,(£) = a, (1 - e %) iy

for the source solution, and

9G £
__g?mi_l = (bj‘mg + dj.m)e
OH, (%) . . C £ + h )

as

for the doublet solutions.

Note that Eqs. (7.4b) and (7.4c¢)

of the H-G model whereas Eq. (7.4a)

model to the source solution. It can be shown that both

constants d;'m

c respectively when a continuity condition

J .

imposed between the adjacent segments.

‘7.4a,b,c! to, and further discretization of the kernel

of Eq. 7.3, result in

and h, _ can be expressed in terms of bJ

Introducing Eqs.

(7.4a)

{7.4b)

(7.4¢)

are the direct application

is a new extension of the H-G

and

is

integrals




— - 1
acosd, + C, .sing )D, ) (7.5)

J+1 J+1
where S, and D, represent the induced potentials per unit

source and doublet strengths respectively by the jt'P segment of

the triplet line at the point (xl,r:,Em); they are given by

I+l -iux, —ip(x,-&)

J+1 -
s’ - j [e e ] cos AR, de (7.8)
lu R,
g5
and
i+l
J+1 3
D) - J 5= S(xi - £, prar (7.7)
g.J
where
xl—§ ———
A 2 - 2
S(x, - 1, pr,) = f cos (A/t2-8r. 2) dz
2-g2r 2
sr, vi2-pg2r,
Evaluations of DJ.J‘*1 as well as its derivatives, with
respect to x, and r,, are identical to those shown for bodies of
J+1
revolution in Appendix B. For detailed evaluations of S, and
its derivatives, with respect to x, and r , one is referred to
Appendix D. There it is shown that after a transformation these

integrals can easily be evaluated numerically by Gaussian
quadrature.
The domain of influence is defined by a pie segment bounded

by the sector 44, and the inversed Mach cone intersection with
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respect to P, . Hence the effective triplet line is confined to

the part from the body apex to the i'"? segment where the

J+1 J+1
discretized kernel integrals S, and D represent the

induced potential per unit source and doublet strengths by the
J'" segment of the triplet line. Moreover, it should be noted

that the steady mean flow potential ¢, at the point (x,, r , o_)

3+

3+l
can be obtained from Eq. (7.5) by letting k=0 in s, and D

7.4 Least Square Procedure
For convenience, a surface panel is defined as a body

surface element whose area is bounded by R - a8, and Asj. A

control point is located at (x,,R, (x,,6,),8,), the central point
of each panel, where i=1,...N, m=1,...M, and 6,=(8, + 4,+1)/2.

To obtain the potential values of ¢ at the control point, one

m

b and

of the effective ways is to relate the unknowns a; o 5. m

c, to the cross flow potential ¢, by means of the method of

J,m o

weighted least squares. (For simplicity, we have dropped the
subscript "1" in $,, g hereafter.)

To apply the least square method one considers the induced
potential by the singularities distributions at the m'h" pie

segment Ac, at the points (x, ,r ,4,_ ,)* and (x,,r,,8,,,), i.e.

J+1

Laj'”sj + (bj,mcosam_

— J+1

¢ (%, ,r .0, ) =
J

n M""

i g \
1+c3,m51nam-l’DJ

and (7.7}

- - 3+l
,aCOS8,, ,*c; psind ,  )D,

- 1
¢, (x,,r ,8,,,) = 2 a, 8§, + (b j

£ _ —
It should be noted that for this point r =R(x,,4,_,) ard for the

next r = R(xl,am*l).
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Let ¢, , be the exact value of the potential at the body
surface, the source- and doublet-strength solutions, due to the

lease square approach, arc the ones that minimize the residual

1 m+1 ) i+l ) i+l
I =5 £ W {[ 2 a, 58, +(b, ycosé,+c, ,sind )D I-¢, n12 (7.8)
“n=m-1 3= 1
FIRY 3+l
where S and D are now evaluated at the control point

(x; R, (x,,8,)8,); ¢, n represents the exact value of the
potential at the i'" point and W, are the introduced weight
functions. Note that Eq. (7.8) is a least square procedure set
up for three adjacent panels, namely from (m-1) to (m+l). Thus,

imposing

a1 _ 3l _ 3l _
da, , 8b, ., T dc, . 0 (7.9)
vield,
m+ 1 i J+2 - .= I+l - 1+ 1
Z W, {2 a; ,8;, +(b, pcosd,+c; ,sind )D; ¢ . n 1S = 0
h=m-~-1 =1
m+1 i J+1 - R J+1 1+ 1 -
Z W, {Z a, ,8, +(b, pcoséf,+c; ,sind, )D; -4, ,}D, cosg, =0
h=m-1 =1
m+ 1 i i+l - — i+l - i+l
Z W, {Z a, ;5; +(b, ycosf,tc, ,sind,)D; -¢; ,}D; siné, =0
h=m-1  j=1
(7.10)
These equations can be expressed in matrix form as
A5, my i-1 a;,a .01
a1, oo E vy, {eria) = ot {enla (7.11)
Cj,m )=t Cj,m ¢i.m+l
The matrices [A],, (Y], ; and (H], are given in Appendix E.




We can now relate the unknowns a, ., b, _, and c¢c; , to
$, m-1 #, .o and ¢, ., by a least square matrix (LS], i.e.:
1, @
(b2} = (18109, ) (7.12)
c 1. m
for 1 = 1...N and m=1,...M. On the LHS of Eq. (7.12), the column

vector has the dimension of (3xNxM), while on the RMS, [LS] is u
matrix of dimension (3xNxM)x(NxM), and the unknown potentiail . @

is a column vector of dimension (NxM).

Hence, the velocities at the control point can be expressed

as:
(%) = (U189, ) (7.13)
(%) = (VIMLS1(4,,,) (7.14)
(59 = (WIISI(8, 0} (7.15)

where [U], (V] and [{W] are matrices of dimension (NxM)x({3xNxM)

containing the velocity influence coefficients in the x, r and ¢

d¢ ¢ 1 d¢
dx; ' dr, and r, 94,

1

in the

direction. Now, the velocities
tnagency condition, Eq. (6.13), can be replaced by the cross flow

potential ¢, through Eqs. (7.13-15). Consequently, {¢, _} is

s @
the unknown to be solved in Eq. (6.13)
In passing, we note that the evaluation of the steady mean

flow potential follows the same procedure as described above,
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+

J J+l
except that the kernel integrals s and D, are to be

replaced by their steady counterparts.

7.5 Panel Flutter

To verify the solutions obtained in the high reduced-
frequency range, one is required to apply the present BTM to the
supersonic panel flutter problem for cylindrical shells.
Previously, Dowell, and Widnall (Ref. 37) used Laplace transfer
technique to study this problem, whereas Platzer et al. (Ref. 38)
used the Linearized Method of Characteristics (LMOC). The
objective of these studies is to evaluate the generalized forces
acting on the vibrating cylindrical panel of an otherwise rigid,
infinitely long, cylindrical shell.

Let L be the length of tnhe cylindrical panel i.e.
(0 ¢ x < L). Along the cylindrical shell, the oncoming flow
upstream of the panel is uniformly supersonic. The cylindrical
panel is allowed to perform small-amplitude harmonic oscillations
(see Fig. 55).

For inviscid analysis of panel flutter, Eq. (6.3) (G, = 0)
is the commonly used governing equation. (r the mean surface of

the cylindrical panel, r=R, the tangency condition reads:

$,, = -kh + h, , 0 < x <L (7.16)

= 0 , x <0

where h is the mode shape of the vibrating panel, defined as

h(x,8) = sin(jrx)cos(nég) (7.17)




1
The unsteady pressure coefficient C, on the panel surface is

simply
Co, = -2(¢,, + ike ] (7.18)

and the generalized aerodynamic forces Q | reads

2r L
1 101y ] .
Q,, = 5¢ j J C, sin(jrx)cos(ng8)R d& dx (7.19;
0 0
1Ci)
where C, l is the unsteady aerodynamic pressure due to the mode
sin(irx)cos(nd8) and C = 2» for n = 0 and = for n = 0.

Bundled triplets are placed along the x-axis in the interval
-BR ¢ T < L-BR. The panel elements and control points between
0 ¢ x <L and 0 < & < 27 on the mean surface are distributed
according to the cosine law in both x and 6 directions.
Combining Egs. (7.14), (7.16) and (7.17) results in the following

tangency condition evaluated at the control points.
[V][LS]{¢i'm} = {(ik sin(jmx;)+jm cos(jmx,))cos{(ng )} (7.20)

The potential values ¢ can now be obtained from the above

o
equation. Thus, the unsteady pressure and the generalized forces
can be evaluated according to Eqs. (7.18) and (7.19).

In the present formulation, the circumferential mode shape
(i.e., the cos(né8) factor) is retained throughout the analysis,
whereas Refs. 37 and 38, cos(n#) is factorized out in their
formulation. As a result, the number of control points required

in the circumferential direction increases rapidly with an

increase in n, although the computation time is still
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comparatively rapid. It is essential to point out that the
present method is a full three dimensional one which can treat a
much wider scope of problems than those in Refs. 37 and 38.
Feasible applications in panel flutter using the present method
include closed (pointed) bodies of circular or noncircular cross
sections and vibrating panels of non-harmonic mode shapes (i.e.,

the case of partially oscillating shells).

7.6 Results and Discussion
To validate the present method, numerical examples in terms
of steady pressures, stability derivatives, and generalized
forces are presented for asymmetric bodies and for cylindrical

panels.

7.6.1 Asymmetric Bodies

The steady pressure distributions for three different
asymmetric conical bodies are presented in Figs. 51, 52 and 53 at
the same freestream Mach number M_ = 2.0. Since the flowfields

are conical, only the circumferential C_ s are presented for these

cases. Asymmetric configurations as shown in Figs. 51 and 52 are
placed at mean angle of attack a« = 0, whereas the elliptic cone
in Figure 4 is at a = 5°, Since the flow is symmetrical with

respect to the meridian plane, pressures on half of the body are
presented (0 < ¢ < 180°). Because of the steeper variation in
the given body curvature (due to cos 34), a bundle of 36 triplet
lines is distributed in equal circumferential intervals for a
full body in Fig. 51. The geometries in Figs. 52 and 53 are less

complicated; only 18 triplet lines were used for full bodies in
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both cases. It can be seen that the present computed results are
in good agreement with Devan’s results using the finite
difference method (Ref. 35) and the USSAERO results (Ref. 2).
Typically, we use 40 panels in the circumferential direction in
the USSAERO program for obtaining results in Figs. 51, 52 and 53.

In the present method, 5 segments are used in the x
direction. This amounts to a total of 100.200 panels and control
points to be evaluated. Because the evaluation scheme of the
present kernel is much simpler, the CPU time required is about
one tenth of that needed in the USSAERO code.

Fig. 54 presents the static (Figs. 54a, 54b) and dynamic
(Figs. 54c, 54d) normal force and moment coefficients at various
Mach numbers for a family of elliptic cones placed at zero mean
angle of attack. The ellipticity ratio as defined by a/b, ranges
from .75 to 1.3. Figs. 54a and 54b compare the present results
with those computed by USSAERO. There appears to be an increase
in discrepancies as the elliptic cone becomes more wing-like,
i.e., a/b > 1. When the ratio approaches one, all results
converge to the results for a circular cone as obtained in
Chapter 4.

Similarly, the computed results for the out-of-phase normal
forces and moment coefficients (Figs. 54c¢ and 54d) also converge
to those obtained in Chapter 4 when a/b approaches one as
expected. In passing, we note that little Mach dependency is
observed for the static moments (about Xg = 0), whereas the
damping moment decreases rapidly with increasing Mach number.

Furthermore, all results confirwm the expected trend that both the
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static and the damping moments increase with decreasing

ellipticity ratio, i.e., as the body becomes more wing-like.

7.6.2 Cylindrical Panel Flutter

In order to validate the present method in the high-
frequency domain, supersonic cylindrical flutter cases (Fig. 55)
are selected for comparison with existing theories (Refs 37 and
38).

A bundle of triplet lines are arranged according to a cosine
distribution both in the circumferential and in the axial
directions (0 < 8 ¢ 27 and 0 < x ¢ 1). The cylindrical panel is
first evenly divided into n intervals in the circumferential
direction, say n=5. Within each interval, eight control points
are used, given a total of 40 control points. In the axial
direction, 25 points are used for all n’s.

The real and the imaginary parts of the generalized forces

on the cylindrical panel are presented in Figs. 56 and 57 for the

freestream Mach number M, = v2 and the reduced frequencies k=0
and 1.0. The generalized forces are computed based on Eq.
(7.19).

It is seen that good agreements are found between the
present results and those of Dowell and Widnall (Ref. 37) and of
Platzer et al. (RHef. 38) up “o n=5 for both reduced frequencies

(k=0 and 1.0).

7.6.3 Salient Features of BTM

It has been shown that the present method has the following

features:
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With the H-G model, the BTM is computationally efficient and
robust for unsteady flow computations in the full frequency
range.

Although the total number of panels needed for BTM is
comparable to that of a surface panel method, the CPU time
is only one tenth of the latter.

The BTM places the control points on the exact body surface
whereas a surface panel method usually places the control

points on the approximate surface,
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CHAPTER 8
Body-Wing Combinations

8.1 Unsteady Lifting Surface Method

Previously,

an effective panel method has been fully

developed for oscillating lifting surfaces

in supersonic flow HGM

(Ref.

4).

This analysis has been further extended from the

velocity potential treatment to that of an acceleration potential

one so that the regions of wake can be completely avoided in the

calculation.

For this reason,

the acceleration potential version

of the HGM (called AHGM)

is most advantageous in coping with the

unsteady problems for wing-body combinations,

in that only the

panels lying on the wing-body surfaces are needed to be accounted
for.

According to AHGM, the normal velocity and the unknown
linearized pressure can be related by the familiar expression,
i.e.

9

where

K = e—iy(x—!) g; f cos (AR) e—ip(x—v)dv
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and S is the effective wing area enclosed by the intersections
due to the inversed Mach code originated from the control point

(x,y,2).

8.2 Body—-Wing Formulation
The interference between the body and the wing is
essentially provided by the flow tangency condition. In the case
of the lifting surfaces, the pressure-normal velocity relation is
the result of the tangency condition, i.e.

f ALpKdS = vy (8.2)

w

in which v, i« the normal velocity, or the downwash on the
lifting surface. In terms of the body influence and the given

wing mode, v, represents a difference between these two
vy = B, - (vy)dyg (8.3)

where (v,), is the normal velocity induced by the presence of the

body; as related to Eq. (7.1), (v,), =92t . The term B,
represents the wing mode. Thus, Eq. (8.2) becomes
d¢ _ .
(J Ac_Kds), + (5;L)w = B, , on the wing (8.4)
W

Note that in the RHS of Egq. (8.4), kernel K and (%%L)w are

evaluated on the lifting surfaces. Similarly, the relationship

on the body can be derived, i.e.
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+ (J ac_ Kds)y = By , on the body (8.5)

This time, the kernel K and (%%L)B are evaluated on the body
surfaces.

With Eqs. (8.4) and (8.5), the body-wing tangency condition
can be expressed in a matrix form,

. OE oE
L e 1 - G

pw %]
where the kernel function (%%) is related to the least square
matrix by the following equation

($2) = ({ulfn,) + [vli{n,} + [wl{n,}}-(LS] (8.7)

n,, n. and n, are the directional consines of the body panels;

B, and B, are the given body and wing modes respectively. Egq.
(8.6) is solved to yield the Ac, value on the wing. The
velocities on the body can be evaluated at the control points
from Eqs. (7.13, 7.14 and 7.15). Consequently, the pressure on

the body can be determined from Eq. (6.18).
8.3 Pressure Coefficients

8.3.1 Unsteady Pressure Coefficient for the Body

Eq. (6.18) provides the explicit unsteady pressure formula
in the cylindrical coordinate for an oscillating elastic body.
For body-wing configurations, it is convenient to rewrite this

expression in the Cartisien coordinate on the body surface.
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1
C, = =2 S, -((1+gg,) (8, ,~2258 " doy) (8.8)
+ ¢oy¢1y + ¢02¢12

t g 9,:

+ ik(g, + $,,8 — 258 F,4)!

where z, is the control point location of the body panel and g 1is

the given body mode.

8.3.2 Unsteady Pressure Coefficient for the Wing

Eq. (8.8) can be applied to account for the pressure on the

lifting surface due to the body-wing interference, i.e.

1
ac, = =28,:{@,  (1+4o,)*8,, 80, ¢, 90, "ike !} (8.9)

The steady velocities ¢_,, ¢,,, ¢,, and the S, term are to be
evaluated according to the effective body panels within the

inversed Mach cone. Eq. (8.9) can be further simplified as

1
Ac, = =25 +{¢,, + iké } (8.10)

since the second order terms in the bracket can be ignored.
Further simplification of Eq. (8.10) results in the linearized

pressure formula

ac, = -2 {$,, + ikg,) (8.11)

which is essentijally the pressure formula of the thin wing.
In passing, we note that to include the factor S, might
upgrade the accuracy in the higher Mach number range as it was

previously noted by Van Dyke (Ref. 10).
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8.4 Generalized Forces and Stability Derivatives

The generalized forces Q,; can be expressed in terms of the

1
uns:eady pressure coefficient ¢, and of the mode shape g as,

1

Q; = S...

Lo /1) 1)
f J Co (n,g z - g n, )ds
S

where S is the wing plus the body surface area; n, and n, are the

normal components in the x and z direction to the wing and body

surfaces, respectively; 2z is the coordinate of the control point:

L¢I)
c, is the unsteady pressure coefficient due to the J-th mode;

g¢!’ is the I-th mode of oscillation; and S, _ , represents the
maximum area or the based area for the body-alone cases, whereas
it represents the wing planform area for the wing-body
combination cases.

The stability derivatives are related to the generalized
forces by the following formulae:

Cop = Ro(Q),)

La

where L is the body length for body alcone cases, and the wing
mean chord for body-wing combination cases; k in this instance 1is
the reduced frequency based on L. Q,, and Q,, are the 12 and 22

components of the generalize?! force matrix representing two
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rigid-body modes. The former is the plunging mode and the latter

the pitching mode.

8.5 Results and Discussion

To verify the present results for wing-body combinations in
the low-frequency limit, measured stability derivatives in Refs.
44 and 45 are selected for comparison. Two configurations are
selected as shown in Fig. 58:

Case A: Aspect Ratio AR = 3.¢C, Triangular Wing-Body
Case B: Aspect Ratio AR - 3.0, Swept Wing-Body

To compute the stability derivatives for these
configurations, a bundle of 20 triplet lines is used for the
body. With 10 segments along the body axis, this amounts to 200
control points on the body surface. However, only 50 panels are
required for modeling the wings.

Figs. 59 and 60 show the computed static and damping moments
for the wing-body configurations in Cases A and B respectively.
Good agreements are found between the present results and the
measured data in the overall Mach number ranges at two pitching-
axis locations, x; = .25c and .35c (c is the chord length). For
damping moment calculations, one notices that the predicted
results of the analytical theory (Ref. 46) deviate further from
the measured data than the present results. This is due to the
fact that an analytical solution of a rectangular wing is used to

approximate that of a delta and a swept wing planforms.
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CHAPTER 9
CONCLUSION

Several unsteady supersonic methods have been developed for
computation of unsteady aerodynamics for elastic bodies of
revolution, asymmetric bodies and body-wing configurations.
These methods include the Harmonic Potential Panel (HPP) method,
the Bundle Triplet Method (BTM) and the combined method of BTM
and Harmonic Gradient Method (HGM) for body-wing combinations.
All methods are based on the Harmonic-Gradient (H-G) model in
order to obtain accurate solutions in the full frequency domain
and the lower Mach number range. Specific conclusions of the
present development can be summarized as follows:

1. For bodies of revolution in oscillation the proper
choicé of the coordinate system has been subject to some
controversy in the past. The formulation in the wind-fixed,
body-fixed, and the pseudo-wind-fixed systems are presented. The
solutions of the linearized equation in the wind-fixed system,
and of the first-order equation in the body-fixed and the pseudo-
wind-fixed systems are compared for a cone in rigid and bending
oscillations. It is shown that when the wind-fixed system is
used in a straight forward manner a singularity appears at the
body apex and contaminates the solution downstream.

2. Further investigation of this problem shows that such
apex singularities also appear in the body-fixed system if the
linearized equation instead of the first order is solved. Also

it is shown that the origin is due to the use of cylindrical
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coordinates., When the problem is correctly formulated in a
conical coordinate system the pressure coefficient is shown to
remain regular at the body apex (s<2e Appendix C).

3. The computational procedure for the mean flow has been
developed for both the linear and nonlinear potential equations.
Unlike the unsteady computation procedure for wing planforms, the
steady mean flow solution enters into the boundary conditions and
pressure coefficient for the unsteady flow. Hence, 1t is
important to investigate the influence of the steady mean flow
upon the unsteady pressures as well as the flutter boundaries.

We believe that it is the first time that nonlinear effects have
been included in an unsteady panel method. Computed steady
pressures and stability derivatives using the present nonlinear
method are found to agree well with the known results. Unsteady
nonlinear results show that the influence of the mean flow
nonlinearity is important. For a slender body, nonlinear effects
become more apparent in the high Mach number range. OQur unsteady
nonlinear results are in better correlation with measured data
and unsteady exact theories than all other results using
different methods.

4. For a cone in plunging and pitching oscillations the
flutter boundaries, as determined by the linear and nonlinear
methods, are compared to those obtained by experiment and other
theories in Figs. 33 and 34. With reference to the measured
data, all of the computed flutter boundaries are conservative
predictions. The computed boundaries become more conservative in

the order of present nonlinear method, present linear method and
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slender body theory. By contrast, all results as predicted by
previous theories failed to provide a conservative flutter
boundary.

5. The aerodynamic damping coefficient of a cone-cylinder
in the first two free-free bending modes of oscillation and of
the Saturn SA-1 model in the first free-free bending mode of
oscillation are compared to those obtained by experiment and
other theories in Figs. 29 and 31. For both configurations all
the computed results establish close trends in the measured data.
By contrast, all results as riedicted by previous theories are in
considerable discrepancy. For both configurations the
aerodynamic damping is found positive, and therefore it provides
stabilizing effects within the Mach number range considered.

6. With the H-G model, the BTM is computationally
efficient and robust for unsteady flow computations in the full
frequency range.

7. Although the total number of panels needed for BTM is
comparable to that of a surface panel method, the CPU time is
only one tenth of the latter.

8. The BTM places the control points on the exact body
surface whereas a surface panel method usually places the control
points on the approximate surface.

9. To validate the present method, numerical examples have
been studied for various three-dimensional configurations. These
include: steady pressures on three asymmetric conical bodies,
generalized forces for cylinderical panel flutter and stability

derivatives for bodies and wing-body combinations. It is found
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that all computed results are in good agreement with existing
theoretical results and measured data.

10. The combined use of the developed AHGM and the BTM
allows the wing-body surface to be the only computed domain.
Moreover, the body-wing formulation can directly yield the
unsteady pressure on wing planforms. Hence, the present
computation procedure clearly leads to the development of a user-
friendly program code.

Finally, we conclude that all methods proposed have been
thoroughly validated with existing theories or measured data. It
is believed that all methods developed thus far can become
effective tools for supersonic aercelastic applications to
realistic configurations.

Throughout three phases of this development, most of our
work has been presented in the AIAA meetings as well as appeared
in various kinds of AIAA Journals, (See Refs. 47 to 54). For
technology transfer, one report along with the developed program
code has been forwarded to Army Missile Command (MICOM) in

Huntsville, Alabama in 1986 (Ref. 55).
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APPENDIX A

LINEARIZED EQUATIONS IN THE BODY-FIXED COORDINATE SYSTEM
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APPENDIX A
The body-fixed coordinate system can be related to the wind-

fixed coordinate system of Fig. 3 by the following transformation

— :_ah ’ ’ ’
X = X 5;7(X ,t7) =z (A.1)

z = 2z’ + h(x’,t")

where h(x',t’) 1s the instantaneous normal displacement of the
body and only linear terms in h are retained since it is assumed
to be small.

The operators ¥V, V2 and V¢ of Eqs. (2.2) and (2.3) in

curvilinear coordinates are given by (see Ref. 39;

Ay ; + 1 9y
! h, dq,

—

Q

b3
i

7y a, (A4.2)

H; 34q,

N 9 o 9 __
VA = ETF;E;[aql(h2h3Al) + aqz(hshlAz) + aqg(hltha)] (A.3)

and
1 d _,h,h, ay d ,h,h, aw d _,h h, 3y ]
V2¢ = —moo | —(—2-3 T ) 4 —(=3=1 + L2
hlh2h3[6q1< h, aqx) 6q2( h, aqz) aq3< h, aqa)
(A.4)

. . . g e
where q,, q, and q, are the curvilinear coordinates, a,, a,, and

a, are unit vectors along these coordinates, h,, h, and h; are
the matrix coefficients defined as

Ix’ . 2 dy’ .2 9z’ 2
qu) + (=) + ( ) (A.5)

h? =
( aq2 aq;
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and x', y' and 2z’ are the cartesian coordinates.

In the present case

_ 82 h
hl =1 *Wz
h, = 1 (A.6)
h, = 1

where the nonlinear terms in h(x,t) have been neglected.
The total potential Q in the body-fixed coordinate system

can then be expressed as

Qx,y,2z,t) = x + h (x,t)z + ¢(x,y,2,t) (A7)
where ¢(x,y,z,t) is the perturbation potential. From Eqs. (A.2),

(A.4) and (A.B) and retaining only linear terms in h we obtain

vQ = (1 + ¢, - h,,z¢, ) e, + & e + (h

Yy -y

+ 9, )e, (A.8)

X

720 = h z + & - 2h, _z¢ - h z — h z¢

X X X XX X X X X X X X XXX X

+ ¢ + h o, + ¢ (A.9)

The time derivative in Eqs. (2.2) and (2.3) in the body-

fixed system is given by

Q
l Q
Q@
B
Q
N

+

Q
ot

!
Q
o+
Q@
-+
Q| Q
x

+
&
(ud
Q| Q
N

1
o
N
+
o o

L

(A.10)

xt

Q|
‘-*
QjQ
kS
Q]
N
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Therefore

3
W: hxt z + 0,' - hx:Z(l + °.\() + h:(bz 1411)
a2 qQ .
at’ 2z heo,z ¢, - h, ,z{(1 + ¢ ) - h 20,
+h, ¢, + h o, “A.12)
We can now compute all the terms of Eqs. (2.2} and :2.3) 1in
the body-fixed coordinate system. If only linear terms in ¢ are

retained the following linear equation 1s obtained

¢, - 2h ,z¢, - h 26, + &+ h & + 9,
= Mi[ocn - hy, .20, - h, 2%, + h ¢, + h ¢,
+ 26, - 2h, 20, - 2h 20, + 2h,, &, + Zh 0,

+h, 0, + 2h,0 , ] (A.13)

Now, letting h(x,t) = g(x)}s(t) = s elktg(x), and
*(x,y,z,t) = ¢,{x,y,2) + & ek'¢ (x,y,z), with §,«1, and
substituting these into Eq. (A.13) yields the following

equations:

"/I_Mi}¢0xx * ¢oy>’ - ¢'ng =0 (a.14)

for order of one and,

a1




(1-M2) g - $ ., < #,., - 2ikM24,, + kZ2MZg

= Mi[keg,z‘pox - k2g¢'3: - 2ikg,,z¢0x T 2g,ik¢02

- 2g’ikz¢"'xx* 2gik¢=)xz - g’,’z¢0x - 2g”zwoxx * g”¢3

P

- 2g’¢0xz] - g”¢02 + 2g”Z¢Oxx * g’,,z¢0x (A'IS)

for order of §_.

In cylindrical coordinates Egqs. (A.14) and (A.15) become

1 1 \

(l_Mi) ¢O:‘(x + ¢er + F ¢Or + FZ— ¢066 = 0 (A.16)
1 1 .

(IML) Biax T Birr * D fir T [T Pige ZIKMIdL. v KIMIs,

- Mi{(kzg’rO’Ox - k?gd,, - 2ikg”r¢0>' + 2g’ik¢0r
- 2¢’1ikré,,, *+ 2giké,,, - &' 'ré,, - 28 °ré .,

* g 8o, * 28785, ,) cos6 + (kgé,, - 28’1k

Oe
- 2gike¢ -8 8y, ~ 289 ) L sin®]
oOx g o= o0x @ r
B 1 : L |
- g’ (¢, cose - = ¢08 sin®) + 2g’’r¢,,,Cc0sO
+ 2¢’ 7 ’r¢,,cos® (A.17)

For a body of revolution the mean flow potential ¢, is
independent of 6, and the cross flow potential can be expressed

as ¢,(x,r,8) = ¢, (x,r)cose. Thus Eqs. (A.16) and (A.17) become

1 \
(I—Mf.) Poxx * Porr * r $or ~ 0 (A.18)
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(1-M2)

1
Prax * ¢‘.rr * T ¢1r

M2 [k2g'rg,, - k2g¢,,
2g’ikr¢, ., + 2gike, .,

g"¢0r + 2g’¢0xr}

a9 1y s
g r¢oxx t g r¢Dx

1 .
- o ¢ - 2ikMZg,, + k2MZg

- 2ikg’''rg,, + 2g'ikg,,

- g”,r¢0x _ 2g)sr¢0xx

g 95, (A.19)
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APPENDIX B

EVALUATION OF THE UNSTEADY POTENTIAL AND VELOCITIES APPLYING THE

HARMONIC GRADIENT MODEL
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APPENDIX B
The integral solution of the homogeneous unsteady wave
equation, i.e. Eq. (2.8) reads

X—-pgr
¢, (x,r) = —é—”-f F(&) 9

. T K(x-¢,8r)ds (B.1)

where the kernel function K, as defined in Eq. (4.2) is given by

K(x—2,8r) = e tH(X=E) 33515 (B.2)

where R=y/(x-£§)2-82r2 | u = kM2/pg2 , X\ = kM_/82

and F(&) is the dipole strength. The value of F(&) at &=0 is
zero in order to satisfy the Mach wave condition.
For integration of Eq. (B.l) it is convenient to use the

relative distance x-f as the independent variable instead of £.

Hence, we define x, = x - & and df = - dx,
where at & = 0 , Xg = X
and at £E = x - Br , Xg = Br

and Eq. (B.l) becomes

o] cosxRD

57 2 dxo (B.3)

o1 fr ~ipx,
¢, (x,r) = 5 F(x-x,) e
X

where R, = Vx2,-82r2.

Integrating Eq. (B.3) by parts and applying the Mach wave

condition at x-fr=0, we obtain
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sr

—

¢,(x,r) 5;[F’x—xo)e—1ﬂx° %;S(xo,ﬁr)

X

8r .
9 ~14X V] ]
- F - o} —38 , d
jx axo[ (x~xq)e ] 3T {xq,B8r)dx, (8.4)

X5 Z_g2p2
where S(x,,8r) = J cosrJz2-8 L de
8

r Jr2-g2r2

The first term of Eq. {(B.4) is zero at the upper and the

lower limits since F(0)=0 for a pointed body and S(fr,8r)=0 along

the apex Mach wave. Consequently, ¢,(x,r) can be expressed as
sr .
_o 1 a _ —iluxgy, 9
$r000) = g [ GlFGexg) 8101 s (xg pran, (3.5)

As discussed in Section 4.2, to solve for Eq. (B.5) the
dipole strength function is discretized into elements along the
body axis and the potential is evaluated at the discrete field

points (x, ,r ).

) X.—&. .
1 J x+la -
$.(x,005) = —57 5 j X, [F, (x,-xg)e "#¥o]
iz1  X; T8
9 d B.6)
5?: S(xg,8r,)dx, (B.

where £, =0 and ¥;,, =x, -fr;.
Introducing the Harmonic Gradient model (as discussed in

tection 4.2),

3
X,

THXey =

[F,(x;-%5)e a, (x,-x5) + bl]e-i#x° (B.7)
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Eq. (B.7) amounts to stating that the dipole strength is

FLix,mxg) = (B v 2oy e 0000l 1y - By ) (B.8)

In the limit of k=0 ( or u-0), Eq. (B.8B8) is reduced to

“xy) = o= an(x,-x%g)2 - b, (x,-%,) (B.9)

Fo{x 5

1 J

Now, the doublet strength model as given by Eq. (B.9) is the

same as the one used by Tsien3° for the steady angle of attack
case.
Substituting Eq. (B.7) into (B.6) yields
x.—¥. .
1 3o Tisl —ipx
¢1(lerJ) = —ﬂ E J [a,(xj_xo) + bi]e 1a o
i=1  X;7F,
9 d B.9
a5~ S(xgs8r;)dx, (B.9)

In order to determine S(xo,prj) it is convenient to apply

the following transformation:

Let 7=gr;coshs , and hence dr=gr;sinhode
where at v=gr; , =0
and T=Xy o=cosh-1%a_

r;
P 3 cosh-lx,/Br;
EF?S(xo,prj) = 3t jo cos(xprjsinha)da.

By applying Leibnitz’s rule,
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3 _ Xgcos{AVxg-g2r 2)

——S{x,,8r.) =
ar ey ——
’ r, \/xg—perZ
(B.10)
r.cosh'lxo/ﬁr‘j
- J \g sinho sin(\prl sinho)de
(o]
Now a second transformation is introduced:
Let sinho=zu , hence do= du
v1+u?
where at o¢=0 , u=0
and o=cosh-130_ u=sinh(cosh‘1(§l—)).
Br; r;

The integral term of Eq. (B.10) now becomes

\p

o vyu2+1

sinh[cosh-1 (32
J 7 ( )d
sin(xgr;u)du.

Using Lashka’s27 exponential series substitution, namely
N

u =~ ] - X a,e-ncu
V1+u? n=1
where the constant "c¢" and the coefficients "a_" can be found in

n
Ref. 27. Letting X, =fr;cosht, and integrating Eq. (B.10) term by

term yields
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d _ _ coshr cos{\gr.sinhr) . cos(xprlsinhr)x

ar)S(T,,BFJ) = szinhz xﬂrj p
. i ane-ncsinhrxﬂ
(xgr,)Z+nZc2

n=1

(-n c sin(*fr;sinhz) - X\fr cos(\fr sinhr)]
8 i ( )

- A —_ ap —)\prL B

\prj Z (xprJ)2+n2C2 (B.ll)

n=1
By substitution of Eq. (B.1ll) into Eq. (B.9) we obtain
cosh‘l(x"g' )

1 Ar,
¢, (x;,r;) = 57 [a, (x,-fr ;coshz) + b,]
=1 cosh'l(ﬁiliL)

Ar,

e—iyﬁchoshr {—p coshr cos(Afr;sinhz)

+ sinh< p[—l + cos(Xfr;sinhv)

N a e—ncsinht
+ 2 (iprj)2+(nc)2 (-n ¢ sin(Afr;sinh7)

n=1l

-xBr cos(rgr;sinhz)]pr ,x -

a, (=\2g2r2) :)}dr

(Ar, )2+ (nc)?

0 ~—1%

n=1

(B.12)

Since all the terms of the integrand in Eq. (B.12) are
regular, they can be integrated numerically by using a Gaussian
quadrature formula.

The velocities in the x and r directions are determined by

taking the derivative with respect to x and r in Eq. (B.3).
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After the derivatives are taken the dipole strength function
discretized and the Harmonic Gradient model applied.
The x-component of the velocity can be expressed

cosh'l(%l_t_L)
3 / . 1 3 ~ipuBr.coshz
¢1 \Xj )rj ) = - 5= ale J
’ =1 Cosh_l(i.l.:‘_g_l_

AT,

{-pcosht cos(Xfr;sinhz) + pBsinhr

B o
\Br;j2+(nc)?

N _ .
[— 1 + COS(\ﬁrjsinhz)+ Z a e ncsinhre
7

=1

[-nc sin(xgr,sinhz) - xgr cos(rgr;sinhz)]fr

N
_ an(-x2p2r12) } \
2 (xﬂrj)2+(nc)2} d= (B.13)
n=1
Again Eq. (B.13) can be integrated numerically by using

Gaussian quadrature since all the terms are regular.

The r component of the velocity becomes

) x. -2, .
a 1 3 i+l -
5?f¢l(xd"3 y = - 57 2 J‘ [a; (x;-%,) + b;]e LH#Xo
J =1 Xy &
9 d B.14
5;;3 S(x,,8r,)dx, (B.14)

next, letting x, = Br,coshz and applying the

differentiation with respect to r,, to Eq. (B.10) yields
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92 3 coshzr cos(2gr.sinhv)

arJZS(r’pri) -7 ar | r,sinhr

T
-9 j ABsinho sin(\fr . sinho)de
arj 0 J

cosht cos{\gr ,sinhz)
r, 2s1nht

coshr A8 sin{\gr sinhz)

r;

T
- J x2p25inh2asin(xpszinha)da
o

(B.15)

When the transformation sinho=u is introduced, the integral

term of Eq. (B.15) becomes

sinht
[ x2 g2 — sin(Agr u)du
o}

v1+uz

Again, when Lashka’s exponential series substitution is used this

integral becomes

.sinh . . cos(ABr.sinh~
A2 82 é%%%%gT; sin(\fr ;sinhv) + (xgpér.2 ) r\2 g2
J J
N a e—n051nht
~ A\2g2 Z (aprj)2+(nc)2[51nht(—n c cos(xprJ51nhr))

n=1

+ xpszin(Xprjsinhr)] - (nc);ifipr.)z[((nc)Z—(xprj)z)
Jd

cos(xpszinhr) -2 nc xprjsin(xprjsinhr)]
N
A2z A2p2a ((nc)2-(rgr,)2)
\Tp7r, T 2 ((nc)Z+(fr, )2)2 (B.16)

928

With Eq. (B.1l€), ar, 5—> of Eq. (B.15) can now be expressed in
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a series form, i.e.,

2 \Br s i 0 (x .
gr SS(r,pr,) = coshrrc§:§n§2151nhr)+xp coshr s;n( Br . sinhv)
3 ) J
ABsinhz cos(\gr.sinht)

sin(xﬁszinhr)

r,

N a e-ncsinhr
+ A2 82 Z (;prj)2+(nc)2

2
r‘J

n=1

B

Luinht(—n c cos(xprjsinhr)+xpszin(xprdsinhr)]

A2 p2
(nc)2+(Xgr )2

[((nc)z—(xprj)2)cos(xprjsinhr)

1

2
r;

-2 n ¢ xprjsin(xprjsinht)] -

) i A2f2a_((nc)2-(rgr )2)
((nc)Z+(xfr;)2)2

(B.17)
Finally where Eq. (B.17) is substituted into Eq. (B.14) and
after some arrangement, we obtain

X.— &

cosh'l(—LFFLLL)
9—~¢ (x ,r.) = - L X ’ (a; (x.-8r coshr)+b. ]
ar "1 T 2w % —r i (X;=8r, "D
b=l cosh‘l(z?:—L)

e

—1iugr;coshr p{coihrcos(Xprjsinhr)

J

+ \f coshr sinhrsin(Afr sinhr)

_ sinhrz

=~ X\g sinh®z sin(\gr;sinhz)
J

cos(xprjsinht) + xzpzrjsinhz
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-ncsinhz

N
2 ?iﬂrj)2+(nc)z (sinht{-n ¢ cos(\fr;sinhz)
=1

n

A\282r sinhz

+ Arysin(xpr;sinhv)] + (nc)2+(xgr; )=

[((nc)2-(xgr )2)cos(rfr,sinhz)

- 2 nc xﬁszin(Xprjsinhr)]} dr (B.18)

All the terms in Eq. (B.18) are regular and can be

integrated numerically by a Gaussian quadrature.
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APPENDIX C

ON THE APEX SINGULARITY FOR OSCILLATING POINTED BODIES: WIND-

FIXED VERSUS BODY-FIXED COORDINATE SYSTEMS
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APPENDIX C

It has been known for some time (see Refs. 17, 41, 42) that,
in the cross flow potential for an oscillating body in the wind-
fixed coordinates system, a singularity at the apex arises. The
origin of this singularity is the second-order derivatives of the
mean flow that appear in the boundary conditions and unsteady
pressure coefficient when these are evaluated at the mean
position of the body surface. For a body in rigid oscillation
with respect to x, the tangency condition and the unsteady

pressure coefficient are respectively given by

1. - R4, =1 = g, + (x-% )8,y -~ R'¢g,, - ik)

+ (x=-%x5)(bgryp — R’¢,,, - ik) at r=R(x) (C.1)

Co = 1 = 25, [(1 + 45,08, * @59, + ike,
- (X—XG)(¢0xr(1 + ¢0x) + ¢Orr¢0r)] at I‘ZR(X) (C.Z)
v-1 1/v-1

where S, = [1 - - Mf.(2¢Ox + 92, + ¢2.)] , k is the

reduced frequency, ¢, the mean flow potential and ¢, the unsteady
flow potential. The second-order derivatives of ¢, can be better
shown to be singular from slender boudy theory. The velocity Po,

in the slender body theory (Ref. &) iz

given by ¢, = Hs , and its derivatives with respect to x
and r by
R'2 + RR’’ RR’
Porx —?———and $rre = - re (C.3)
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R'(0)

R70) ; therefore

On the body apex these terms behave like

for a nonvanishing R’{0) they are singular.

In the body-fixed coordinate system the singularity at the
apex has passed usually unnoticed because the first-order
equation instead of the linearized one has been solved in this
system and then the second-order derivative terms do not appear
in the formulation.

For a body in rigid oscillation with respect to X, the
complete formulation in the body-fixed system is given by:

Governing equation;

(1-M2) $iu * Bupp + 7 b1 ~pr 8, + K2MZg, - 2ikM2g,,

= M2 (K2 (rdg, (X% )80, ) *+ 2iK(Po,~Thy,, * (x-xg )04y,

+ 2¢g. .1 (C.4)
Boundary conditions;

¢, = o, = ¢,, =0 at x-gr=0 /C.5)

¢, -~ R'¢,, = -1 - ik(x-x;+RR’) at r=R(x) (C.86)

Pressure coefficient;
CL o= = 28,(e, 4 (1+g,,0 + #o,.(L+g, ) + ik((x-x;) ¢,

Rey,, + ¢, at r=R(x; (C.7)

I[f the solution of the linearized equation in the body fixed

ls attempted we need to account for the right-hand-side terms in
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Eq. (C.5). This can be done through the following particular

solution
¢,°(x,r) = re,, - (x=-x;)8,, (C.8)

Therefore the solution of Eq. (C.5) can be expressed as
¢, (x,r) = ¢80 (x,r) + ¢2(x,r) where ¢? is the solution to the
homogeneous equation.

By substitution of this equation into Eq. (C.7) and (C.8) we

obtain
g, - R’gh, = -1 - ik(x-%g + RR’)
¢Ox - R¢Oxr + (X—XG).(¢Orr - H,¢Oxr)
+ R’(¢Oxx'—¢0r) at r=R(x) (C.9)
and
ClL = =28, {#h,(1+8y,) + do.82, + ike¢l + Re,,,
- (X—XG)(¢0X!‘(1+¢OX) + ¢0r¢0rr)
* R{do,Poxx * PorPoxr)) (C.10)

It can be noticed that when the linearized equation 1is
solved in the body fixed system also, second-order derivatives of
the mean flow, and therefore singular terms, appear in the
tangency condition and pressure coefficient.

In terms of slender body theory Hoffman and Platzer!?2 have
shown that although the velocity ¢,,, in the wind-fixed
coordinate system is singular at the body apex, the pressure

coefficient is regular. In the body-fixed system Revell2! also
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has shown that, within the approximation of the slender body
theory, the pressure coefficient as obtained from the solution to
the linearized equation for the unsteady cross flow, also remains
regular.

In terms of not-so-slender body theory, this apex
singularity has not been investigated before. In this Appendix
the formulation in the wind-fixed system for unsteady flow is
presented in a conical coordinate system (see Fig. 58) and shown
that in this conical coordinate system the apex singularity is
totally removed. For pointed bodies the body apex can be treated
as a cone and, therefore, the assumption of conical flow and the
use of a conical coordinate is justified at the apex.

The conical and cylindrical coordinates are related by the

following equation

SZ = xz 4 rz

} (C.11)

tan v = r/x

The mean flow velocities in the x and r directions are given

by (see Ref. 43)

$¢ox = — a cosh-! (cotv)
(C.12)
o, = a Vcot2v-g2
where a = 1

coto

).

cotoycot?2¢-82 + cosh 1 (

and ¢ is the half-cone angle.




If the terms ¢, ., and ¢, , are expressed in the conical

coordinate we obtain

- a cot? v 1
¢Orr - ] —_—
sin vycot2v—g2
(C.13)
- a cot v 1
¢Orx - s

sin vy/cot2v-g2

and Eq. (C.l) when expressed in the conical system becomes

¢, = -s COSa[l + acosh-l(COt”)] _ a(coso—-s.)
Y sind3oycot2o-82
- ik(scoso-s;) at v=o (C.14)

It can be seen that no singularity appears in this equation.

The form of Eq. (C.14) suggests that the solution ¢, can be

sought in the form of

¢, (s,v) = E st (v) (C.15)

n=0

When the governing equation for ¢, in the wind-fixed

coordinate system is transformed to the (x,v) coordinate and Egq.

(C.15) is used we obtain
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E sn-2[f (v)(n(n-1)(sin2v-g2cos2v) + n(cos2v-g2sin2v)

+ n - 5?%37) + f’n(v)(Zsinvcosv(n—l)Mi + coty)

+ £2'(v)(f2sin2y + cos2v)] + k2MZ i snf, (v)

n=0

- 2ikM2[ ) s"-1[f_(v)ncosy-f)(v)sinv]] = 0

n=0

(C.18)
When Eq. (C.15) is used to satisfy the boundary conditions,

Eq. (C.14), the following equations and boundary conditions for

fo, f, and f; (where j=2,3,...) can be obtained from Egqs. (C.16)
and (C.14)

(~B2sin2y + cos2v) f)’(v) 2M2 sinvcosvfj(v)

, 1 - )
+ COtVfO(V) m fo(y) =0
fo(v) = 0 at v=p l (C.17)
(Mach wave)
£2(v) = sg( 2 + ik)  at v=o
° sin3o+ycot2o-82

(cone surface)

where s, is the center of rotation in the conical coordinate

system.
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(-B2sin2v+cos?2v)f]’(v) + cotvf](v)

- (B%sin?v+cos2vcotv)f (v) = - ZikMisinvfo(v)
fl(v) = 0 at v=u
(C.18)
fl(v) = - cosa[l + acosh'l(COta)
+ a - ik] at v=o J

sin3oycot2o-g2

and finally a recurrence formulation can be written for fj(v)

with j=2,3,...
£, (v)[Jj(j-1)[sin2v-g2cos2v) + j(cos2v-gZsin2vy) )
+ J - 57%3;] + f;(v)(ZSinvcosv(j—l)Mi + cotv)
+ £’ (v)(g2sin2v+cos?v)
' (C.19)
= - k2M2 f(v) + 2 ikMZ (f(v)(j-1l)cosy - f’(v)sinv)
J=2 J-1 i-1
f,(v) =0 at v=u
£f; (v) =0 at v=e¢, for jZZJ

It can be seen that the solution to Eqs. (C.17), (C.18) and
(C.19) do not give any singularity at the apex and therefore the
potential as given by (C.15) will be regular at the apex.
However, as with the slender body theory, the velocity ¢,, will

be singular at the apex. As can be shown, it behaves like 1l/s.
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We need to investigate whether or not the pressure remains
regular. To do so, let us consider first the terms ¢,, (1l+¢,,) +

PorrPor in Eq. (C.2), which can be expressed at v=o as

L a coto coto

{1 - a cosh-1¢ ) -~ a cotoycotZo-g2)

sino/cot2e-g2

and by substitution of the value of a

(coto)
a coto {l _ {cosh-1 B +C0t0\/COt20—p2] - o
cota%cotza-pz+cosh_1(C;to)

ssinoycot2o-82

and Eq. (C.2) for the pressure coefficient in the (s,v)
coordinate can be expressed as

sinvy

Cé = —ZSO{(1+¢Ox)(COSV¢ls - —s¢1x) + ¢Or(5inv¢ls
cCosvy
+ S932 4 ) (c.20)

If Eq. (C.15) is substituted and the terms are rearranged,

we obtain

Cl = -2s, sh-1{nf_ (v)(cosv(l+g,,) + sinve,, ]
n=0
- f) (v)(sinv(l+g,,) - #,.cosv)} (C.21)
But sinv(l+¢,,) - ¢,.cosv) = -¢,, + tanv(¢,,+1) = 0 at v=o
by the mean flow tangency condition. Therefore
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C

ko X o

= =28, S s?~Inf (v)(cosv(l+¢,,) + sinv ¢,,.) (C.28)

n=9

Eq. {(C.28) is finite everywhere. Therefore it is proved
that for not-so-slender oscillating bodies the singularity at the
body in the wind-fixed coordinate system is a spurious one and if
the problem is formulated in a conical coordinate system, the
pressure is regular at the apex. The same conclusions can be
obtained if the previous formulation is done for the body-fixed
coordinate system.

Since the singularity in the conical coordinate system is
removed this solution for the body apex can be used as the
starting solution. For the rest of the body a cylindrical
coordinate system can be used and since the singularity has been

removed a regular pressure coefficient will be obtained

everywhere on the body.




APPENDIX D

EVALUATION OF THE INDUCED UNSTEADY POTENTIAL AND VELOCITIES BY A
DISTRIBUTION OF SOURCES
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APPENDIX D

As shown in Chapter 7 the induced potential by a

distribution of unsteady sources at the point x,, r,, ¢, is given
by
X, ~fr,
6. (x 0 ,0,) = f F,(£)B(x, - &, fr, )dE (D.1)
0
When the transformation & = x, - gr, coshe is introduced to Eq.

(D.1), the potential ¢,(x;,r;,o,) can be expressed as

0
p,(%x,,r, ,8,) = -J F,(%x;, - Br, cosho) §(¢lpri)d¢ (D.2)

X .
cosh- 11—

Ar,

~ipufr, coshe

where §(¢,ﬂri) = e cos(Xfr;sinh¢).

After discretizing along the x-axis and upon applying the

Harmonic Gradient model Eq. (D.2) can be expressed as

i e,
j+1 i .
¢l(xi,ri,am):-§ aj [e_I#Xi—e_lﬂpriCOSha]‘COS(Xﬁrisinho)dq
=l (D.4)
where o = cosh-1(%%4) and o - cosh-1 (Xizfienry

Since the integrand in Eq. (D.4) is regular the integration
can be done numerically by a Gaussian quadrature.

The velocities in the x and r direction can be obtained by
taking the derivatives with respect to x, and r; in Eq. (D.2).

Thus, in the x direction we have
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d¢ a3 X. = X,
~rl = ~ - 1
3%, ax, [cosh 13?? F,(0)B(cosh F?T’ gr,)
0
- f so— F,(x, - fr cosho)B(o,fr,)do (D.5)
S X, i
cosh F?T

If the condition that the source strength at the body apex
1s equal to zero is now imposed, F (0)=0, Eq. (D.5) is then

expressed as

0
3¢, _ ) -
3;? = —I 5?? Fm(xi - pricosha)B(alpri)da (0.6)

X .
cosh~ 14—

Br,

Eq. (D.6) after discretization along the body axis and upon
applying the Harmonic Gradient model can be expressed as
i 7.y

cos(Afr ;sinho)do (D.7)

1)
b
L]
|
V]
g
1]
|
~
®
X
—

Since the integrands of Eq. (D.7) are regular the integrals
of Eq. (D.7) are evaluated numerically by a Gaussian gradrature.

The velocity in the r direction is given by

%%T = E%T[COSh_l%?T] Fm(O)E(COSh'l%?Ts Br,)
0
_j @ —[F, (x,-fr, cosho)B (o, pr,)]do (D.8)

1
cosh'lék—
Ar,

Now applying again F_ (0) = 0 and after discretization and
making use of the Harmonic Gradient model Eq. (D.8) can be

expressed as

116




1
9¢, - z a;J [Bcoshoe e—lﬂpriCOSha-cos(xprisinha)

—iypricosha_e—iﬂxi)xp
iu

+ (e sinhoosin(Xprisinha)]do (D.9)

The integrals appearing on Eq. (D.9) are also evaluated
numerically by Gaussian quadrature.

Note that the transformations in Eq. (D.2), as previously
used by von Karman (Ref. 13) and Tsien (Ref. 40), provides only
the principal value for the integral. Furthermore, it also
removes the singularities along the Mach cone x - gr = 0,

rendering the numerical evaluation of the integral much easier.
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APPENDIX E

EXPLICIT EXPRESSIONS OF MATRICES [A],, [Y] AND [H],

Ji

IN EQ. (7.11)
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The explicit expressions of matrices

all the elements, in Eq.
Fm*l 1*1‘2
ZW, (S, )
h=m-1
L, m+1l 1+1 1+1 -
fA] =] ZW, S, D, coséd,
h=m-1
m+1 1 +1 1+ 1 L=
W, S, D sinéd,
Lh=m—1
m+1l j+1 i+1
W, 5 S,
h=m-1
m+1 Jj+1 i+1 -
[Y]jx: ZWhSJ D, cos?é,
h=m-1
m+1 j+1 i+l -
ZWhSJ D, sinéd,
=m-1
_ 1+1
wm—lsl
. 1+ 1 B -
(Hj , = | Wa_,D, siné_ _,
1 +1 R
me_lDl siné _,

APPENDIX E

(A}, (Y],

(7.11) are as follows:
m+1 i+1 i+1 -
W, S, D, cosé,
h=m-1
m+ 1 i+ —_ "
ZW, (D, coséd, )2
h=m-1
m+ 1 1+ 1 .= —
ZW, (D, )2sinéd, cosé,
h=m~-1
m+1l j+1 i+1 —
W, 5 S, cosé,
h=m-1
m+1 j+1 i+1 -
ZwW, D, cos28,
h=m-1
m+l J+1 i+l - _
ZW, D, sind, coséd,
n=mo-1
i+l
WS,
i+1 -
WmD cosé
i +1 L=
WmD siné,
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and [H],, involving
m+l i+l i+l _
ZW, S, D, sinéd,
h=m-1

m+ 1l i+1 -
ZW, (D, )%siné, cosé,
h=m-1

m+ 1
=W, (D
h=m-1

+1

1 —
i 2
. sinéd, )
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Fig. 1 Body bending flutter of British J.T.V.I. ramjet
missile,
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Fig. 2 Sequence of flutter modes at intervals of 1/100

second during the flutter incident.

126




*W9)SAS 93BUIPIOOD
PIXTJ-puim--opnasd ‘paxTj-Apoq ‘pIXTJ-puiy £ "813

(x)6 300N

-———
-—— = =]




.05 ]
Q CHARACTERISTICS(SIMS)
— PRESENT HPP
— —— USSAERO
—.— VAN DYKE ist ORDER
.03

—— VAN DYKE 2nd ORDER

R(X) = 176X, 0SS X S .5
R(X)z088 , 5<X < 1.

c.99ofF

0.97

()
=

0.e5 .
0.0 02 0.l 06 0.8 1.0

Q/U, TOTAL VELOCITY/FREESTREAM VELOCITY

Fig. 4 Comparison of normalized velocities on a cone-
cylinder surface at M~=2.075 and angle of attack

a=0°.

128




=== PRESENT HPP NONLINEAR
~-==-- CHARACTERISTICS EXACT
—— PRESENT HPP
.20 USSAERO
16 R(X)= 1316 (2X - X 2)
Qs X =i
Ma3=213
d2
(@]
a
@)
.08
04
0]
-~ -04 —
Fig. 5 Mean flow pressures for a parabolic~ogive at

M_=2.0 and angle of attack «=0°.




== PRESENT HPP NONLINEAR
----- CHARACTERISTICS EXACT
——— PRESENT HPP

20— ... USSAERO

R(X)= 1316(2X-X2)
0<X 7!
Mg = 3.0

12
O
Q.
®)
.08
.04
0
-04
Fig. 6 Mean flow pressures for a parabolic-ogive at

M_=3.0 and angle of attack a=0°.

130




‘0°€="W 18 Apoq [1mijuOq

~-19puvr]4Ao-aA180 um Jo suolnNqralsip sansssad jejoy, L 81

‘Mn-mwﬂnu v—nvnwaamw .Hc Qﬂnw:< AA~ ONoMuHRv u—ocaaﬂ »ho Q—M=< Aw
X X
01l 8 9 14 2 0o (o)) a8’ 9 t 2 (0]
L L T T T T T T
42 AIU_ 1z m_
= | = —
D g g
r ~
9 {9
3 3015 337 3
m m
wm wm
ol (n o1 ©
C C
0 Py
m i
4 v
2 X N
© oe-Tw N ©
mgm 1Sx5¢e lg) 8
o ‘X €21 - 981 (XY (o)
8 N|eBSX5S ‘8O (XY o 8
X (X211 -€52 )00
0oH3IYsSSN ~—
SNd ---
ddH LN3S3¥d -O-
© | ® o J

!
[ae}




P-'—'(Xj,

R(Xj))

Fig. 8 Panel arrangement for axisymmetric bodies,




‘jopom juvipwad dStuomiwmy 6 "Birg

Oxp _ 0
0 ﬂ _ 9 —C = 3 —_ 'le
a(l Oxquv—cv = 9 ( x-1x) n__ e (V) _ 0 oy
Oty - (has+d Oyriy- xrf xrf} - _ 4
(Apog) 13POW ddii e (BUTM) 19POW 9-H o
-
—

*x

(ev) W] -~
™(ev) 3 ——

;.avs_.--
x| o) 3y —

e

(a9)




*0°2=4 Aouanbauy

pPaonpas puw (- z- W 18 opom furyonyvd utr suod v a0}
S1uUa1d1J3900 sanssaad asuqd-jo_jno pumw sseyd_uj o1 314

AQOQ YH3ON3INS - -
33X14d ONIM ddid LN3IS3IHA  ---
J3x14 ANIM 0dN3Sd ddH INISIHL -—

T I R R kel ettt Saiisdidiny Assiu Sl

o)




"0°2=4 Aousanbosaj poaonpoa

PU®B 0°Z- W 18 opom Bulpusq JSJIJ U1 DUOD B JOJ
SMJUD 101} Jo00 danssaad aseyd.- Jo-Ino puw asuyd-_uj

T1

AR

/1
=
vi

0 'XGO0 =(X)H

AQO8 HIAANINS -
\ A3X14 ONIM ddi LNJIS3IHG  ----
J3axid Ago8 ddH IN3S3dd ——
13X13 ONIM-00N3Sd ddil LN3S3IHd —




3I4VHS I00W ONION3E ONODI3IS

\ \ .

?

A008 Y3IAN3IS ~~
a3xXi4 ONIM ddid INISIH] -----
a3IxX14 AJO8 ddH IN3ISIHH ~~
Q3XTJONIM-00N3Sd ddit INISIHd ~—

N - QO - N

(x)6

—— e e - ——— -

-y e e

L
N
[

® L ® o o ® ®
*0°Z=Y Acusnbasuay paonpaa
pue °Z="W 18 9Ipom faipusq pPUODIIS UY JUOD B JOJ
SIUd1ID1J 3900 danssoad ssvyd-jJo-jno pun ossuyd-ujy rABRE AR




Mg

-— PRESENT HPP PSEUDO WIND FIXED
-- PRESENT HPP 800Y FIXED
—= SLENDER 300Y

180° F ———

R(X)rexX, 0$XgI

O° ! 1 I i
| 2 3 4 S
MCD
Fig. 13 Modulus and argument of the generalized forces

versus Mach number for a cone in first bending
mode (I=3) at reduced frequency k=2.0.




Fig.

14

—= PRESENT HP® PSELDO-WIND FIXED
—— PRESENT HPP B0DY FiXED
-~ SLENDER 800Y

=3

R(X)s €X, 0 Xg !

Modulus and argument of the generalized forces
versus Mach number for a cone in first bending
mode (I=4) at reduced frequency k=2.0.

138




— PRESENT HPP SSEUDQ- WIND FIXED
——= PRESENT HPP 300Y FIXED

--- SLENDER 300Y
40 < ':0)
R(X)s €(2X-X%2), O<X § !
30+
S 20r
10 F
O L 1 L S
| 2 3 4 5
Mo
180"+
- °
o 1357
o
Som
-1
< g0t
45°L
o 1 L L —_—
! 2 3 4 S}
Mo

Fig. 15

Modulus and argument of the generalized forces
versus Mach number for a parabolic-ogive in first
bending mode (1I=3) at reduced frequency k=2.0.




Fig.

16

— PRESENT HPP PSEUDO-WIND FIXED
—-—= PRESENT =PRP BODY FIiXED
--= SLENDER BO0ODY

R(X)=el{2X-X2), 0 X< |

o

Modulus and argument of the generalized forces
versus Mach number for a parabolic—ogive in second
bending mode (I=4) at reduced frequency k=2.0.

140




40

30

180°

135°

_Arg QII

Fig. 17

Mo

-.= SLENDER BOOY

R(X}*2eX, 0sX 5.5
R(X)=e, 55 X5

— PRESENT HPP PSEUDQ WIND FIXED
-~— PRESENT HPP BODY FiXED

Modulus and argument of the generalized forces

versus Mach number for a cone—-cylinder in first
bending mode (I=3) at reduced frequency k=2.0.




— PRESENT HPP PSEULDO WIND FIXED
-- PRESENT HPP 800Y FIXED
\i—SLENDER 800Y
\
801 _\ . . _
ol —~—-
R{X)*»2eX, 0SX< 5
= R(X)s ¢, 58 XSL
S aor
20~
O 1 1 —I — —1
| 2 3 4 S
Mg
180°F
o 135°
o
15
< s
t 90 -
45°t
o L A .l ;i
| 2 3 4 5
MQ)
Fig. 18 Modulus and argument of the generalized forces

versus Mach number for a cone-cylinder in second
bending mode (I=4) at reduced frequency k=2.0,

142




Fig.

— PRESENT HPP
_ --- LINEARIZED MOC
'~ -.- SLENDER BODY

oL RX)=e(2X-X2), 0<X <
XG=4
! L 1 1
I.O 1.5 2.0 2.5 3.0
M(D
19 Comparison of theoretical damping-in-pitch moment

coefficients for a parabolic ogive at various Mach

numbers.,

143




Cpy. +C
Mg M,

Fig.

1.0
-08r
0.6
04 B x
_— X ® X53.5 }MEASURED
' 4 x.:g ) DATA
A — PRESENT HPP
-0.2- A ~——=- LINEARIZED MOC
RIX)= 5556 X (.6-X), O € X £.3 - PACKARD
R(X): 08, 3<XSI O— 8ono
O L 1 i i Jo. H
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
MACH NUMBER, M g
20 Comparison of theoretical and experimental

damping—-in-pitch moment coefficients for a
parabolic—-ogive cylinder at various Mach numbers.

144




[ ] PRESENT HPP

Xg ==
r- — -— SLENDCER 800Y THEORY
— = == TOBAK ~WEHREND CCNE THEOQORY
.

10 . seeeer - NEWTONIAN IMPACT THEORY
3.93% —— LINEARIZED MOC
R(X) = 1763X, 0< X £ 3036 O A8MA
RIX) = 069IX+ 0325, O  aeoc
3036 X €10 O Nasa
’(6 = 4817 FAY BRL (ABMA SAL.}
N  BRL (8RL BAL.) } REF.
:;7 O NOL RANGE
3 QO  AEDC
+
2=
=
(]
oo 1 1 1 1 i 1 . 1
0.0 1.0 2.0 3.0 40 50 6.0 7.0 8.0 9.0
MACH NUMBER, Mo
Fig. 21 Comparison of theoretical and experimental

damping-in-pitch moment coefficients for a cone
frustrum at various Mach numbers.

145




® o L o o ® o ® ® ® ®
.m.Nnaz 38 dpom Buiyodjyid ur sar1go0 d2170qRINd
B pum 2uU0D B JO0) Aduanbsaiaj psonpsa snsasa
§30J0) poazi[eldusdld dy] Jjo jusmnBaw puw SnEnpop 72 "8y
X ‘ADN3ND3IH4 030NA3Y
o8 0L 03 0S¢ Ov O0¢ 0z Ol
Y T T T T T T 0 X ‘ADN3IND3Y4 03ONA3Y
o8 ©O0Z 09 02 Ob Of 0Z Ol o
—02 T T T T T T T o
.
—
_— :
— — -ov
~. / . ©
: <409 -0l -+
(o]
) :
. o —
sz-"w ) / 1°% o 15x50 O
0+ 9x 9y : n N
l_ / / ~n XS0« (X)¥ N
H
15X 50 N oo oz
XS0 * (X)¥ \\ N
$2-%w 4 /
0+9% Ia_ // dozi
15X 50 9%
(X-2)X50 ~(x) ¥ //[o! c€z-%w A Jog
v 0+%x
\
) / ISXs0
1 - .
AQ08 ¥3ON3ITS —— & % (gX X2)$0 =)y 1008 ¥3IONITS — —
ddH LNISIHY — ddH IN3S3Hd —
os! ot




sojouonbaa}] poounpasa ygiy pue

m.—nlz 18 apom Burysyitd ur aaTd0 Dr7oquand v a0
S1UBTDT1JJ900 Ianssdad ssuvyd-jo-3jno pumw ssuyd-uj £z

AHOINL NOASI] ---
ddH LN3ISIH] —

AN |

10-

LAD |

0+9x
15X50 '(5X-X2)10 « (XY

.- 9%

AHO3IHL NOLSId ---
ddit LN3IS3IYHY —

00

dy w3y

147




*xade 3yl v Furyosjtid ?je1d 3Iv7j ® pus

duUo0d ,1°G ® 10} m.ﬁutz e Sj1uU310T1JJ900 sanssaad
?sayd-Jo .qno puw aseyd-utr ayy Jo uvostaudmop

(dd1) 31vd Lvd —-—
{ddH) 3NOD ——

00

ot -

o8-

02'1-

091-

02-

3

ve

AN

(dd1) 3uvd V4 - -—
(ddH) 3NOD —

Ho9-

H406-

4z1-

d5 ay

148




Fig.

25

= PRESENT HPP NONLINEAR
PRESENT HPP
------ BRONG - EXACT THEORY

— - — SLENCER 800Y

- e — —  CE— . C— — —— —— — —— — — — — —

- — n  —— o Ee— —— . ——— — —— — — — ——  —

R(X)=.1763X
0s X £

-
-
e — -

L ] | ]

2.0 3.0 4.0 4.5

MACH NUMBER, Mg

Damping-in-pitch normal force coefficients versus

Mach number for a cone and a parabolic-ogive,

119




Fig.

o w— —— e —,

8 MEASURED DATA
—O— PRESENT HPP NONLINEAR
— PRESENT HPP
-— - SPINNER CODE

ERICSSON

\2-.\.‘\..
R{x) =.156(2x-x") O<xs4 ~.—.
Rix)=] .4sxsl0 xG-.G T~
-.30 I< ® 6
x —
L= [
l 20 30 35
M&)
26 Damping—in-pitch moment coefficient for a

parabolic-ogive-cylinder at various Mach numbers.




JApuUITAD 3U0D ® J0j
‘19qunu yowl SNSAIA JUIIDLJ JHOD Jutdoup osrmeulpoaay LZ A1 g

‘apow Buipusq puodss uy Burjeaqry (q ‘opom Burpuaq Isatj ur Auriniaqrp

W ‘Y4IBWNN HOVW W HIBNNN HOYW

og G2 02 Gl ol o¢ cz 0z G .
olll'lLlilﬂJu—.nI.J T o T T ] IJO
b - zo=
m
[ ¢}
3
< (e}
02 W
2
(@}
—0¢ m —H02Z
< sys . (S 0} INAQ NUA — —
) _“m“w: L8P0 10 o 6 NOISNYdX T HIONS - -
Jov 3 L1 53X30 X662 (x)d LHOIHL NOLS1 - —
O OMY RIS OHNOB ot
dosg I ddH INIS TN - -
vivd oesvin @

45 'ONIdWYA DIWYNAQON3Y




~—— POESENT 4PP ‘

23
Mg 20

22-

Q0
. /’—_y
/) L/) | a) Mean flow pressure .

— DRESENT wPO
2o~ - = SLENDCR 9CDY
Mp 29
x50

b) In-phase pressure.

Q.8
[ — sresent wpe
zo}- - :.LE'.‘gE: 800Y l l
! k]
: X540 l |
'8k
| 3
a ' ‘
& ok .
c) Out-out-phase pressure,

00 0.23% 0.50 Q.73 1.0
X
—
Fig. 28 Pressure coefficients for a Saturn SA-1

configuration at M-=2.0, reduced frequency k=1.8

and center of rotation at the apex.,




*opom Fuipuaq JsITJ ur
BuriwaqrAa vorjwINSIJUOD [-yS UINIRS W JOJ JDqQENU
yompy SNSIIA SIUBIDT1JJo00 Buirdmuep ormuuiApoaon

153

AHO3HL NOLSId —- —

[ejuamiaadxs pue psjindmod jo uostyedmo) 6z 914
@ .
W H38WNN HOVIN
o¢ G2 02 Gl o) Ol 5 X 5882¢ €vS90 =(X)Y
- L T I 10 D 882C S X 5990¢C | CEELI-XGIGH =(X)H
[ mm 990¢C 5 X 5 E£GEE PGSO =(X)H
« [ ] - 2 m €CEE S X51¥2 ! SHPEO-XB92Z «(X)Y
a 2 b2 S XS LIEl vZ0E0 =(X) ¥
} W 2IEI" S X 50 X 9622 =(X)d
v o NOILVYHNOIINOD 3HL 40 AHL3IWO039
o
> X
S~ —H9 W 56C-
~ 0 o1 A\\\M\lIV// z
N 4 o
aﬁd \ 4¢€
O
-.

AQ08 H3ION3S — —

viva g3ynsvan W

031834 NOILYHUN9IINOD 30 34YHS 3JOON
ddH LN3S3I¥d ——

T3QON 1-VS NHNLYS

(x)6




/]

PITCH AXIS / \-CENTER OF
GRAVITY OF
MODEL

Fig. 30 Schematic view of body in pitching and plunging
motion.

154




= B MEASURED DATA
‘ Q —— PRESENT PP
0 D FREQ. EXPANSION
VON KARMAN (Q. S.
R(X)*I3165X, On XA @ s
agxgl

VAN OYXE (C. S)
== SLENDER B0OY

N
H
T
x
5]
.
[*]
[ ]

S

)

k3

N

S 20r

S

~N

> 16k

a

& 2

&

¥p)

& e

-

-

2 .

@ " ;
O L L \v/l A 1
() a 8 1.2 16 20 24

WIND OFF FREQUENCY RATIO, Wy /W

-
3

~N Xz~ @ MEASURED 0ATA

k-] ! —— PRESENT HPP

= —> FREQ. EXPANSION

> --= VON KARMAN (Q. S.)

O R(X)e 13165X, —=— VAN DYKE (Q. 5.}

2 0sxX s ~-~ SLENDER 80DY
w l.2r .

W Xgt 58

¢}
&
c or
& =%
~ af "
-

2

|

u" o L 1 A L 1

[o] 4 8 1.2 1.6 20 24

WIND OFF FREQUENCY RATIO, Wiy /Wy

Fig. 31 Flutter boundaries for a 7.5° cone at M_=2.0,

155




Fig.

32

FLUTTER SPEED, \Z /(b/2 Wq/ﬁ)

FLUTTER FREQUENCY, W, /W,

Xg @ MEASURED DATA
r —— PRESENT HPP
—O FREQ EXPANSION
--= VON KARMAN (Q 5}
—— VAN OYKE (@ SJ
ROX) = 13165 X, ~-«= SLENOER BODY
12k osxs!
Xge 58
8 b=
at
0 L 1 L i |
0 4 8 12 1.6 20 24

Flutter boundaries for a 7.5°

K5 = 8 MEASURED DATA
\ —— PRESENT HPD
— FREQ EXPANSION
~=c /ON KARMAN (@ S)
AX)= 13168 X, — VAN DYKE (Q S)
0<sxsi == SLENDER 500Y
20F x;- 58 ,/
'
Id
’ /
/
1.6 Moximum tumnel conditions / .
attaingple without flutter 7 /
/ .
’
12k lr/27,.
/
/24
afF /
4!—
o ' L v L s L
o] 4 8 1.2 16 20 24

WIND OFF FREQUENCY RATIO, W/ Wq

WIND OFF FREQUENCY RATIO, W /Wq

156

cone at M-

3.0.




FLUTTER SPEED, Vf /(b/2 wa./u)

Fig.

2.0

33

MEASURED DATA [’xsj
PRESENT HPP NONLINEAR

PRESENT HPP .
FREQ. EXPANSION

VON KARMAN (Q.S.)
R(X)=.132X, 05 X <1

VAN DYKE. (Q.S.)
SLENDER BODY Xg=.58 s

1 1 L

2.0 2.4 2.8
MACH NUMBER, M 4

Flutter speed boundaries versus Mach number for a

7.5°

cone .

157




74

@ MEASURED DATA
=== PRESENT HPP NONLINEAR
——— PRESENT HPP
~—-.— FREQ. EXPANSION
-——— VON KARMAN (Q. S.)
70k —— VAN DYKE (@5.)
: —-— SLENDER B80DY R(X)= 132X, O< X S10
XG=.58
N
3
~
o]
3
>
LZ) 66 - ————m—————
(91} /’ \ ———— - —
] // \
LIOJ // T~
x o —
(T
x .62+
L
'._
}_.
2
I
w
58k
1 1 | 1
1.6 2.0 2.4 2.8 3.2
MACH NUMBER, M
Fig. 34 Flutter frequency boundaries versus Mach number

for a 7.5° cone.
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Fig. 37 Pressure coefficient for an asymmetric cone at

M_=2.0, a=0 deg.
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Fig. 39 Normal -force coefficient for elliptic cones versus

the ellipticity ratio a/b at M_=3.0.
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Fig. 40 Pitching moment coefficient for elliptic cones

versus the ellipticity ratio a/b at M_=3.0.
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Fig. 41 Damping-in-pitch normal force coefficient and

damping-in-pitch moment coefficient for elliptic
cones versus the ellipticity ratio a/b at M_=3.0.
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—— PRESENT HPP /
——— SLENDER WING /
z | THEORY J/

Fig. 48 Pressure distribution per unit angle of attack
along the y-axis for a circular cone, elliptic
cone and a flat plate at M_=2.0.
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BUNDLED TRIPLET METHOD
DOMAIN OF INFLUENCE

Fig. 50. Sketch Showing the Domain of Influence Based on the
Bundled Triplet Method.
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. 51 Steady Pregsure Distributions for an Asymmetric Cone at

2.0 and Angle of Attack « = 0°.
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Fig. 52 Steady Pressure Distributions for an Asymmetric Cone at

M, = 2.0 and Angle of Attack « = 0°.
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Fig. 53 Steady Pressure Distributions for an Elliptic Cone al

M_ = 2.0 and Angle of Attack a = 5°.
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Fig. 54 Stability Derivatives of a Family of Elliptic Canes at
Various Mach Numbers.
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Fig. 55 Cylindrical Flutter Showing Two Vibrating Modes.
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Fig. 56 Real Part of the Generalized Aerodynamic Force Q,,

Versus Circumferential Mode Number.
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Fig. 57. Imaginary Part of the Ceneralized Aerodynamic Force Q) ,

Versus Circumferential Mode Number.
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Fig. 58 Sketches of Wing-Body Configurations

a) Aspect Ratio AR
b) Aspect Ratio AR
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CONICAL COORDINATES s, v, 8
CYLINDRICAL COORDINATES X,r, 8

Fig. 61 Conical Coordinate and Cylindrical Coordinate Systems
for a Circular Cone.
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